2,212 research outputs found

    Comparison of AOD, AAOD and column single scattering albedo from AERONET retrievals and in situ profiling measurements

    No full text
    Here we present new results comparing aerosol optical depth (AOD), aerosol absorption optical depth (AAOD) and column single scattering albedo (SSA) obtained from in situ vertical profile measurements with AERONET ground-based remote sensing from two rural, continental sites in the US. The profiles are closely matched in time (within ±3 h) and space (within 15 km) with the AERONET retrievals. We have used Level 1.5 inversion retrievals when there was a valid Level 2 almucantar retrieval in order to be able to compare AAOD and column SSA below AERONET's recommended loading constraint (AOD > 0.4 at 440 nm). While there is reasonable agreement for the AOD comparisons, the direct comparisons of in situ-derived to AERONET-retrieved AAOD (or SSA) reveal that AERONET retrievals yield higher aerosol absorption than obtained from the in situ profiles for the low aerosol optical depth conditions prevalent at the two study sites. However, it should be noted that the majority of SSA comparisons for AOD440 > 0.2 are, nonetheless, within the reported SSA uncertainty bounds. The observation that, relative to in situ measurements, AERONET inversions exhibit increased absorption potential at low AOD values is generally consistent with other published AERONET–in situ comparisons across a range of locations, atmospheric conditions and AOD values. This systematic difference in the comparisons suggests a bias in one or both of the methods, but we cannot assess whether the AERONET retrievals are biased towards high absorption or the in situ measurements are biased low. Based on the discrepancy between the AERONET and in situ values, we conclude that scaling modeled black carbon concentrations upwards to match AERONET retrievals of AAOD should be approached with caution as it may lead to aerosol absorption overestimates in regions of low AOD. Both AERONET retrievals and in situ measurements suggest there is a systematic relationship between SSA and aerosol amount (AOD or aerosol light scattering) – specifically that SSA decreases at lower aerosol loading. This implies that the fairly common assumption that AERONET SSA values retrieved at high-AOD conditions can be used to obtain AAOD at low-AOD conditions may not be valid

    The role of super-spreaders in modeling of SARS-CoV-2

    Full text link
    In stochastic modeling of infectious diseases, it has been established that variations in infectivity affect the probability of a major outbreak, but not the shape of the curves during a major outbreak, which is predicted by deterministic models [Diekmann et al., 2012]. However, such conclusions are derived under idealized assumptions such as the population size tending to infinity, and the individual degree of infectivity only depending on variations in the infectiousness period. In this paper we show that the same conclusions hold true in a finite population representing a medium size city, where the degree of infectivity is determined by the offspring distribution, which we try to make as realistic as possible for SARS-CoV-2. In particular, we consider distributions with fat tails, to incorporate the existence of super-spreaders. We also provide new theoretical results on convergence of stochastic models which allows to incorporate any offspring distribution with a finite variance

    Density profiles and density oscillations of an interacting three-component normal Fermi gas

    Full text link
    We use a semiclassical approximation to investigate density variations and dipole oscillations of an interacting three-component normal Fermi gas in a harmonic trap. We consider both attractive and repulsive interactions between different pairs of fermions and study the effect of population imbalance on densities. We find that the density profiles significantly deviate from those of non-interacting profiles and extremely sensitive to interactions and population imbalance. Unlike for a two-component Fermi system, we find density imbalance even for balanced populations. For some range of parameters, one component completely repels from the trap center giving rise a donut shape density profile. Further, we find that the in-phase dipole oscillation frequency is consistent with Kohn's theorem and other two dipole mode frequencies are strongly effected by the interactions and the number of atoms in the harmonic trap.Comment: Total seven pages with five figures. Published versio

    Aerosol data sources and their roles within PARAGON

    No full text
    We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, surface, and aircraft remote sensing systems are described, along with those of direct sampling networks and ship-based stations. It is evident that an enormous number of aerosol-related observations have been made, on a wide range of spatial and temporal sampling scales, and that many of the key gaps in this collection of data could be filled by technologies that either exist or are expected to be available in the near future. Emphasis must be given to combining remote sensing and in situ active and passive observations and integrating them with aerosol chemical transport models, in order to create a more complete environmental picture, having sufficient detail to address current climate forcing questions. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) initiative would provide an organizational framework to meet this goal

    Altered brain connectivity in sudden unexpected death in epilepsy (SUDEP) revealed using resting-state fMRI

    Get PDF
    The circumstances surrounding SUDEP suggest autonomic or respiratory collapse, implying central failure of regulation or recovery. Characterisation of the communication among brain areas mediating such processes may shed light on mechanisms and noninvasively indicate risk. We used rs-fMRI to examine network properties among brain structures in people with epilepsy who suffered SUDEP (n = 8) over an 8-year follow-up period, compared with matched high- and low-risk subjects (n = 16/group) who did not suffer SUDEP during that period, and a group of healthy controls (n = 16). Network analysis was employed to explore connectivity within a ‘regulatory-subnetwork’ of brain regions involved in autonomic and respiratory regulation, and over the whole-brain. Modularity, the extent of network organization into separate modules, was significantly reduced in the regulatory-subnetwork, and the whole-brain, in SUDEP and high-risk. Increased participation, a local measure of inter-modular belonging, was evident in SUDEP and high-risk groups, particularly among thalamic structures. The medial prefrontal thalamus was increased in SUDEP compared with all other control groups, including high-risk. Patterns of hub topology were similar in SUDEP and high-risk, but were more extensive in low-risk patients, who displayed greater hub prevalence and a radical reorganization of hubs in the subnetwork. SUDEP is associated with reduced functional organization among cortical and sub-cortical brain regions mediating autonomic and respiratory regulation. Living high-risk subjects demonstrated similar patterns, suggesting such network measures may provide prospective risk-indicating value, though a crucial difference between SUDEP and high-risk was altered connectivity of the medial thalamus in SUDEP, which was also elevated compared with all sub-groups. Disturbed thalamic connectivity may reflect a potential non-invasive marker of elevated SUDEP risk

    Atmospheric Radiation Measurements Aerosol Intensive Operating Period: Comparison of aerosol scattering during coordinated flights

    Get PDF
    Journal of Geophyshysical Research, Vol. 111, No. D5, D05S09The article of record as published may be located at http://dx.doi.org/10.1029/2005JD006250In May 2003, a Twin Otter airplane, equipped with instruments for making in situ measurements of aerosol optical properties, was deployed during the Atmospheric Radiation Measurements (ARM) Program’s Aerosol Intensive Operational Period in Oklahoma. Several of the Twin Otter flights were flown in formation with an instrumented light aircraft (Cessna 172XP) that makes routine in situ aerosol profile flights over the site. This paper presents comparisons of measured scattering coefficients at 467 nm, 530 nm, and 675 nm between identical commercial nephelometers aboard each aircraft. Overall, the agreement between the two nephelometers decreases with longer wavelength. During the majority of the flights, the Twin Otter flew with a diffuser inlet while the Cessna had a 1 mm impactor, allowing for an estimation of the fine mode fraction aloft. The fine mode fraction aloft was then compared to the results of a ground-based nephelometer. Comparisons are also provided in which both nephelometers operated with identical 1 mm impactors. These scattering coefficient comparisons are favorable at the longer wavelengths (i.e., 530 nm and 675 nm), yet differed by approximately 30% at 467 nm. Mie scattering calculations were performed using size distribution measurements, made during the level flight legs. Results are also presented from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument, which compared favorably (i.e., agreed within 2%) with data from other instruments aboard the Twin Otter. With this paper, we highlight the significant implications of coarse mode (larger than 1 mm) aerosol aloft with respect to aerosol optical properties

    Detection of human papillomavirus in laryngeal squamous cell carcinoma: systematic review and meta-analysis

    Get PDF
    Background: Recent studies have reported a human papillomavirus (HPV) prevalence of 20% to 30% in laryngeal squamous cell carcinoma (LSCC), although clinical data on HPV involvement remain largely inconsistent, ascribed by some to differences in HPV detection methods or in geographic origin of the studies. Objective To perform a systematic review and formal meta-analysis of the literature reporting on HPV detection in LSCC. Methods Literature was searched from January 1964 until March 2015. The effect size was calculated as event rates (95% confidence interval [CI]), with homogeneity testing using Cochran's Q and I2 statistics. Meta-regression was used to test the impact of study-level covariates (HPV detection method, geographic origin) on effect size. Potential publication bias was estimated using funnel plot symmetry. Results One hundred seventy nine studies were eligible, comprising a sample size of 7,347 LSCCs from different geographic regions. Altogether, 1,830 (25%) cases tested HPV-positive considering all methods, with effect size of 0.269 (95% CI: 0.242 to 0.297; random-effects model). In meta-analysis stratified by the 1) HPV detection technique and 2) geographic study origin, the between-study heterogeneity was significant only for geographic origin (P = .0001). In meta-regression, the HPV detection method (P = .876) or geographic origin (P = .234) were not significant study-level covariates. Some evidence for publication bias was found only for studies from North America and those using non–polymerase chain reaction methods, with a marginal effect on adjusted point estimates for both. Conclusions Variability in HPV detection rates in LSCC is explained by geographic origin of study but not by HPV detection method. However, they were not significant study-level covariates in formal meta-regression
    • …
    corecore