30 research outputs found

    Agro-Morphological Exploration of Some Unexplored Wild Vigna Legumes for Domestication

    Get PDF
    This research article published by MDPI, 2020The domestication of novel or hitherto wild food crops is quickly becoming one of the most popular approaches in tackling the challenges associated with sustainable food crop production, especially in this era, where producing more food with fewer resources is the need of the hour. The crop breeding community is not yet completely unanimous regarding the importance of crop neo-domestication. However, exploring the unexplored, refining unrefined traits, cultivating the uncultivated, and popularizing the unpopular remain the most adequate steps proposed by most researchers to achieve the domestication of the undomesticated for food and nutrition security. Therefore, in the same line of thought, this paper explores the agro-morphological characteristics of some wild Vigna legumes from an inquisitive perspective to contribute to their domestication. One hundred and sixty accessions of wild Vigna legumes, obtained from gene banks, were planted, following the augmented block design layout of two agro-ecological zones of Tanzania, during the 2018 and 2019 main cropping seasons for agro-morphological investigations. The generalized linear model procedure (GLM PROC), two-way analysis of variance (two-way ANOVA), agglomerative hierarchical clustering (AHC) and principal component analysis (PCA) were used to analyze the accession, block and block vs. accession effects, as well as the accession × site and accession × season interaction grouping variations among accessions. The results showed that the wild species (Vigna racemosa; Vigna ambacensis; Vigna reticulata; and Vigna vexillata) present a considerable variety of qualitative traits that singularly exist in the three studied checks (cowpea, rice bean, and a landrace of Vigna vexillata). Of the 15 examined quantitative traits, only the days to flowering, pods per plant, hundred seed weight and yield were affected by the growing environment (accession × site effect), while only the number of flowers per raceme and the pods per plant were affected by the cropping season (accession × season effect). All the quantitative traits showed significant differences among accessions for each site and each season. The same result was observed among the checks, except for the seed size trait. The study finally revealed three groups, in a cluster analysis and 59.61% of the best variations among the traits and accessions in PCA. Indications as to the candidate accessions favorable for domestication were also revealed. Such key preliminary information could be of the utmost importance for the domestication, breeding, and improvement of these species, since it also determines their future existence—that is, so long as biodiversity conservation continues to be a challenging concern for humanit

    Under-exploited wild Vigna species potentials in human and animal nutrition: A review

    Get PDF
    This research article published by Elsevier, 2018Food insecurity, protein-energy malnutrition, and food-feed competition have motivated the search for alternative food and feed sources for human and animal nutrition. According to the FAO, only four crop species provide half of the plant-based calories in the human diet. This review, with an inquisitive focus on investigating alternative potential food and feed sources, has revealed that the Vigna genus (an important group of legumes) possesses more than a 100 species from which only 10 have been domesticated and are being given better attention. Thus, more than 90 species are still under-exploited despite their probable huge potential to alleviate food insecurity either by adding food varieties (domestication) or by providing information for breeding purposes. The review further demonstrates that the utilization of the wild Vigna species for both human food and animal feed is still very limited because of the unawareness of their potentials over some improved varieties which are facing challenges. An increased scientific effort towards exploring the potentials of wild legumes is recommended in planning the future food strategies

    Banana biomass estimation and yield forecasting from non-destructive measurements for two contrasting cultivars and water regimes

    Get PDF
    Open Access JournalThe largest abiotic constraint threatening banana (Musa spp.) production is water stress, impacting biomass buildup and yields; however, so far no studies have investigated the effects of water stress on allometric equations in banana. Weighted least square regression models were built for (i) estimating aboveground vegetative dry biomass (ABGVD) and corm dry biomass (cormD) and (ii) forecasting bunch fresh weight (bunchF), based on non-destructive parameters for two cultivars, Mchare Huti-Green Bell (HG, AA) and Cavendish Grande Naine (GN, AAA), under two irrigation regimes: full irrigation (FI) and rainfed (RF). FI affected growth, yield, and phenological parameters in the field (p < 0.05) depending on the onset of moisture stress. Pseudostem volume (Vpseudo) proved a good predictor for estimating ABGVD (R2adj = 0.88–0.92; RRMSE = 0.14–0.19), but suboptimal for cormD (R2adj = 0.90–0.89, RRMSE = 0.21–0.26 for HG; R2adj = 0.34–0.57, RRMSE = 0.38–0.43 for GN). Differences between RF and FI models (p < 0.05) were small as 95%CI overlapped. Vpseudo at flowering predicted bunchF in FI plots correctly (R2adj = 0.70 for HG, R2adj = 0.43 for GN; RRMSE = 0.12–0.15 for HG and GN). Differences between FI and RF models were pronounced as 95%CI did not overlap (p < 0.05). Bunch allometry was affected by irrigation, proving bunchF forecasting needs to include information on moisture stress during bunch filling or information on bunch parameters. Our allometric relationships can be used for rapid and non-destructive aboveground vegetative biomass (ABGVD) assessment over time and to forecast bunch potentials based on Vpseudo at flowering

    Extracts of common pesticidal plants increase plant growth and yield in common bean plants

    Get PDF
    Common bean (Phaseolus vulgaris) is an important food and cash crop in many countries. Bean crop yields in sub-Saharan Africa are on average 50% lower than the global average, which is largely due to severe problems with pests and diseases as well as poor soil fertility exacerbated by low-input smallholder production systems. Recent on-farm research in eastern Africa has shown that commonly available plants with pesticidal properties can successfully manage arthropod pests. However, reducing common bean yield gaps still requires further sustainable solutions to other crop provisioning services such as soil fertility and plant nutrition. Smallholder farmers using pesticidal plants have claimed that the application of pesticidal plant extracts boosts plant growth, potentially through working as a foliar fertiliser. Thus, the aims of the research presented here were to determine whether plant growth and yield could be enhanced and which metabolic processes were induced through the application of plant extracts commonly used for pest control in eastern Africa. Extracts from Tephrosia vogelii and Tithonia diversifolia were prepared at a concentration of 10% w/v and applied to potted bean plants in a pest-free screen house as foliar sprays as well as directly to the soil around bean plants to evaluate their contribution to growth, yield and potential changes in primary or secondary metabolites. Outcomes of this study showed that the plant extracts significantly increased chlorophyll content, the number of pods per plant and overall seed yield. Other increases in metabolites were observed, including of rutin, phenylalanine and tryptophan. The plant extracts had a similar effect to a commercially available foliar fertiliser whilst the application as a foliar spray was better than applying the extract to the soil. These results suggest that pesticidal plant extracts can help overcome multiple limitations in crop provisioning services, enhancing plant nutrition in addition to their established uses for crop pest management

    Beneficial insects are associated with botanically rich margins with trees on small farms

    Get PDF
    Beneficial insect communities on farms are influenced by site- and landscape-level factors, with pollinator and natural enemy populations often associated with semi-natural habitat remnants. They provide ecosystem services essential for all agroecosystems. For smallholders, natural pest regulation may be the only affordable and available option to manage pests. We evaluated the beneficial insect community on smallholder bean farms (Phaseolus vulgaris L.) and its relationship with the plant communities in field margins, including margin trees that are not associated with forest fragments. Using traps, botanical surveys and transect walks, we analysed the relationship between the floral diversity/composition of naturally regenerating field margins, and the beneficial insect abundance/diversity on smallholder farms, and the relationship with crop yield. More flower visits by potential pollinators and increased natural enemy abundance measures in fields with higher plant, and particularly tree, species richness, and these fields also saw improved crop yields. Many of the flower visitors to beans and potential natural enemy guilds also made use of non-crop plants, including pesticidal and medicinal plant species. Selective encouragement of plants delivering multiple benefits to farms can contribute to an ecological intensification approach. However, caution must be employed, as many plants in these systems are introduced species

    Assessment of the soil suitability for soybean growth and the prospect biofertilizers use in selected areas of Tanzania

    Get PDF
    The rapidly increasing global human population threatens the availability of safe and nutritious food. Among others, soil fertility degradation, insufficient use of proper fertilizers and scanty soil characterizations have major contributions in lowering the productivity of crops. To ensure the use of sufficient proper fertilizers for optimum crop productivity, it is important to evaluate the fertility status of soil which is a vital tool in deciding the type and the amount of fertilizer to be supplemented. This study aimed at evaluating soil fertility in the soybean growing and the non growing areas of Tanzania and to assess their suitability for growing the soybean crop as well as prospective use of rhizobia biofertilizers through the assessment of nodule formation in non-inoculated soybean plants grown in different farmers' fields. A total of 81 soil samples including those in soybean growing and non growing areas of Tanzania, were evaluated in terms of their fertility status through different physico-chemical parameters. From each field, three healthy plants with intense green leaves were selected for nodule counting. The study indicated that, most of the soils (85%) have medium acidic to neutral soil pH with 58% having sufficient organic carbon and 78% at risk of nitrogen deficiency. Soil pH, total N and OC had significant (p < 0.05) correlations (r) of 0.14, −0.22 and −0.27 with nodule number. The higher number of nodules were in medium acidic to neutral soils, with the highest number, 8.82 in neutral pH soils, indicating the favorability of the particular pH ranges for rhizobia activities. The results of this study suggest that most of the soils are suitable for the production of soybean and the use of rhizobia inoculants

    Invasive plants: ecological effects, status, management challenges in Tanzania and the way forward

    No full text
    Research Article published by Journal of Biodiversity and Environmental Sciences (JBES) Vol. 10, No. 3, 2017Over decades invasive plants have been exerting negative pressure on native vascular plant’s and hence devastating the stability and productivity of the receiving ecosystem. These effects are usually irreversible if appropriate strategies cannot be taken immediately after invasion, resulting in high cost of managing them both in rangelands and farmlands. With time, these non-edible plant species will result in a decreased grazing or browsing area and can lead to local extinction of native plants and animals due to decreased food availability. Management of invasive weeds has been challenging over years as a result of increasingly failure of chemical control as a method due to evolution of resistant weeds, higher cost of using chemical herbicide and their effects on the environment. While traditional methods such as timely uprooting and cutting presents an alternative for sustainable invasive weeds management they have been associated with promotion of germination of undesired weeds due to soil disturbance. The fact that chemical and traditional methods for invasive weed management are increasing failing nature based invasive plants management approaches such as competitive facilitation of the native plants and the use of other plant species with allelopathic effects can be an alternative management approach. Recently, new weed control mechanisms such as biological control and Integrated Pest Management (IPM) have been recommended to complement both the traditional and chemical control methods for improved performance. Plant-plant competition and allelopathy therefore, as natural plant life phenomenon presents an opportunity for successful invasive weeds management

    A nature‑based approach for managing the invasive weed species Gutenbergia cordifolia for sustainable rangeland management

    No full text
    Research Article published by Springer openBackground: The invasive weed species Gutenbergia cordifolia has been observed to suppress native plants and to dominate more than half of the entire crater floor (250 km2) in the Ngorongoro Conservation Area (NCA). As this species has been found to be toxic to ruminants it might strongly impact animal populations in this ecologically diverse ecosystem. Hence, a nature-based approach is urgently needed to manage its spread. We tested two Desmodium spp extracts applied to G. cordifolia and assessed the latter’s germination rate, height, fresh weight and leaf total chlorophyll content after 30 days in both laboratory and screen house experiments. Results: Seedling germination rate was halved by Desmodium uncinatum leaf extract (DuL), particularly under higher concentrations (≥75 %) rather than lower concentrations (≤62.5 %). Likewise, in both laboratory and screen house experiments, germination rate under DuL treatments declined with increasing concentrations. Seedling height, fresh weight and leaf total chlorophyll content (Chl) were also most strongly affected by DuL treatments rather than D. uncinatum root extract, Desmodium intortum leaf extract or D. intortum root extract treatments. Generally, seedlings treated with higher DuL concentrations were half as tall, had one-third the weight and half the leaf Chl content compared to those treated with lower concentrations. Conclusion: Our study shows a novel technique that can be applied where G. cordifolia may be driving native flora and fauna to local extinction. Our data further suggest that this innovative approach is both ecologically safe and effective and that D. uncinatum can be sustainably used to manage invasive plants, and thus, to improve rangeland productivity

    Wild Vigna Legumes: Farmers’ Perceptions, Preferences, and Prospective Uses for Human Exploitation

    No full text
    Research Article published by MDPI Volume 9. Issue 6 | June 2019The insu cient food supply due to low agricultural productivity and quality standards is one of the major modern challenges of global agricultural food production. Advances in conventional breeding and crop domestication have begun to mitigate this issue by increasing varieties and generation of stress-resistant traits. Yet, very few species of legumes have been domesticated and perceived as usable food/feed material, while various wild species remain unknown and underexploited despite the critical global food demand. Besides the existence of a few domesticated species, there is a bottleneck challenge of product acceptability by both farmers and consumers. Therefore, this paper explores farmers’ perceptions, preferences, and the possible utilization of some wild Vigna species of legumes toward their domestication and exploitation. Quantitative and qualitative surveys were conducted in a mid-altitude agro-ecological zone (Arusha region) and a high altitude agro-ecological zone (Kilimanjaro region) in Tanzania to obtain the opinions of 150 farmers regarding wild legumes and their uses. The study showed that very few farmers in the Arusha (28%) and Kilimanjaro (26%) regions were aware of wild legumes and their uses. The study further revealed through binary logistic regression analysis that the prior knowledge of wild legumes depended mainly on farmers’ location and not on their gender, age groups, education level, or farming experience. From the experimental plot with 160 accessions of wild Vigna legumes planted and grown up to near complete maturity, 74 accessions of wild Vigna legumes attracted the interest of farmers who proposed various uses for each wild accession. A X2 test (likelihood ratio test) revealed that the selection of preferred accessions depended on the farmers’ gender, location, and farming experience. Based on their morphological characteristics (leaves, pods, seeds, and general appearance), farmers perceived wild Vigna legumes as potentially useful resources that need the attention of researchers. Specifically, wild Vigna legumes were perceived as human food, animal feed, medicinal plants, soil enrichment material, and soil erosion-preventing materials. Therefore, it is necessary for the scientific community to consider these lines of farmers’ suggestions before carrying out further research on agronomic and nutritional characteristics toward the domestication of these alien species for human exploitation and decision settings

    Assessment of Water Absorption Capacity and Cooking Time of Wild Under-Exploited Vigna Species towards their Domestication

    No full text
    Research Article published by MDPI, 2019Some phenotypic traits from wild legumes are relatively less examined and exploited towards their domestication and improvement. Cooking time for instance, is one of the most central factors that direct a consumer’s choice for a food legume. However, such characters, together with seed water absorption capacity are less examined by scientists, especially in wild legumes. Therefore, this study explores the cooking time and the water absorption capacity upon soaking on 84 accessions of wild Vigna legumes and establishes a relationship between their cooking time and water absorbed during soaking for the very first time. The accessions were grown in two agro-ecological zones and used in this study. The Mattson cooker apparatus was used to determine the cooking time of each accession and 24 h soaking was performed to evaluate water absorbed by each accession. The two-way analysis of variance revealed that there is no interaction between the water absorption capacity and cooking time of the wild Vigna accessions with their locations or growing environments. The study revealed that there is no environment × genotype interaction with respect to cooking time and water absorption capacity as phenotypic traits while genotype interactions were noted for both traits within location studied. Furthermore, 11 wild genotypes of Vigna accessions showed no interaction between the cooking time and the water absorption capacity when tested. However, a strong negative correlation was observed in some of the wild Vigna species which present phenotypic similarities and clusters with domesticated varieties. The study could also help to speculate on some candidates for domestication among the wild Vigna species. Such key preliminary information could be of vital consideration in breeding, improvement, and domestication of wild Vigna legumes to make them useful for human benefit as far as cooking time is concerned
    corecore