145 research outputs found

    Major Modes of Variability

    Get PDF
    This chapter focused on major modes of variability which serve the key role in controlling the regional climate. In terms of tropospheric variability, it defined and discussed ENSO (El Niño Southern Oscillation), NAO (North Atlantic Oscillation), AO and AAO (Arctic Oscillation, Antarctic Oscillation), Indian Monsoon, Indian Ocean Dipole (IOD), PDO (Pacific Decadal Oscillation) and AMO (Atlantic Multidecadal Oscillation). Later it attended stratosphere variability; this constitutes QBO (quasi-biennial oscillation) and SSW (stratospheric sudden warming). Main characteristic features of each of these modes were elaborately discussed

    The early major warming in December 2001 – exceptional?

    Get PDF
    The early major warming in December 2001 is described and compared to the two other December major warmings in 1998 and 1987, showing a strong tropospheric-stratospheric coupling in all three cases. We argue that the occurrence of free westward propagating Rossby waves interacting with a forced quasi-stationary wave number 1 led to these three early events. The possible excitation of these waves is discussed with respect to the tropospheric circulation, which showed strong blockings over the northern Atlantic prior to the early major warmings

    Proteasome Inhibitor Bortezomib Ameliorates Intestinal Injury in Mice

    Get PDF
    Background: Bortezomib is a proteasome inhibitor that has shown impressive efficacy in the treatment of multiple myeloma. In mice, the addition of dextran sulfate sodium (DSS) to drinking water leads to acute colitis that can serve as an experimental animal model for human ulcerative colitis. Methodology/Principal Findings: Bortezomib treatment was shown to potently inhibit murine DSS-induced colitis. The attenuation of DSS-induced colitis was associated with decreased inflammatory cell infiltration in the colon. Specifically, bortezomib-treated mice showed significantly decreased numbers of CD4 + and CD8 + T cells in the colon and mesenteric lymph nodes. Bortezomib treatment significantly diminished interferon (IFN)-c expression in the colon and mesenteric lymph nodes. Furthermore, cytoplasmic IFN-c production by CD4 + and CD8 + T cells in mesenteric lymph nodes was substantially decreased by bortezomib treatment. Notably, bortezomib enhanced T cell apoptosis by inhibiting nuclear factor-kB activation during DSS-induced colitis. Conclusions/Significance: Bortezomib treatment is likely to induce T cell death, thereby suppressing DSS-induced colitis by reducing IFN-c production

    Atmospheric temperature responses to solar irradiance and geomagnetic activity

    Get PDF
    The relative effects of solar irradiance and geomagnetic activity on the atmospheric temperature anomalies (Ta) are examined from the monthly to interdecadal timescales. Geomagnetic Ap (Ap) signals are found primarily in the stratosphere, while the solar F10.7-cm radio flux (Fs) signals are found in both the stratosphere and troposphere. In the troposphere, 0.1–0.4 K increases in Ta are associated with Fs. Enhanced Fs signals are found when the stratospheric quasi-biennial oscillation (QBO) is westerly. In the extrapolar region of the stratosphere, 0.1–0.6 and 0.1–0.7 K increases in Ta are associated with solar irradiance and with geomagnetic activity, respectively. In this region, Fs signals are strengthened when either the QBO is easterly, or geomagnetic activity is high, while Ap signals are strengthened when either the QBO is westerly, or solar irradiance is high. High solar irradiance and geomagnetic activity tend to enhance each other's signatures either making the signals stronger and symmetric about the equator or extending the signals to broader areas, or both. Positive Ap signals dominate the middle Arctic stratosphere and are two to five times larger than those of Fs. When solar irradiance is low, the signature of Ap in Ta is asymmetric about the equator, with positive signals in the Arctic stratosphere and negative signals at midlatitudes of the NH stratosphere. Weaker stratospheric QBO signals are associated with high Ap and Fs, suggesting possible disturbances on the QBO. The signals of Ap and Fs are distinct from the positive temperature anomalies resulting from volcanic eruptions

    Balloon-borne stratospheric BrO measurements: comparison with Envisat/SCIAMACHY BrO limb profiles

    Get PDF
    International audienceFor the first time, results of four stratospheric BrO profiling instruments, are presented and compared with reference to the SLIMCAT 3-dimensional chemical transport model (3-D CTM). Model calculations are used to infer a BrO profile validation set, measured by 3 different balloon sensors, for the new Envisat/SCIAMACHY (ENVIronment SATellite/SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) satellite instrument. The balloon observations include (a) balloon-borne in situ resonance fluorescence detection of BrO (Triple), (b) balloon-borne solar occultation DOAS measurements (Differential Optical Absorption Spectroscopy) of BrO in the UV, and (c) BrO profiling from the solar occultation SAOZ (Systeme d'Analyse par Observation Zenithale) balloon instrument. Since stratospheric BrO is subject to considerable diurnal variation and none of the measurements are performed close enough in time and space for a direct comparison, all balloon observations are considered with reference to outputs from the 3-D CTM. The referencing is performed by forward and backward air mass trajectory calculations to match the balloon with the satellite observations. The diurnal variation of BrO is considered by 1-D photochemical model calculation along the trajectories. The 1-D photochemical model is initialised with output data of the 3-D model with additional constraints on the vertical transport, the total amount and photochemistry of stratospheric bromine as given by the various balloon observations. Total [Bry]=(20.1±2.5) pptv obtained from DOAS BrO observations at mid-latitudes in 2003, serves as an upper limit of the comparison. Most of the balloon observations agree with the photochemical model predictions within their given error estimates. First retrieval exercises of BrO limb profiling from the SCIAMACHY satellite instrument on average agree to around 20% with the photochemically-corrected balloon observations of the remote sensing instruments (SAOZ and DOAS). An exception is the in situ Triple profile, in which the balloon and satellite data mostly does not agree within the given errors. In general, the satellite measurements show systematically higher values below 25 km than the balloon data and a change in profile shape above about 25 km

    Targeting of Natural Killer Cells by Rabbit Antithymocyte Globulin and Campath-1H: Similar Effects Independent of Specificity

    Get PDF
    T cell depleting strategies are an integral part of immunosuppressive regimens widely used in the hematological and solid organ transplant setting. Although it is known to induce lymphocytopenia, little is known about the effects of the polyclonal rabbit antithymocyte globulin (rATG) or the monoclonal anti-CD52 antibody alemtuzumab on Natural Killer (NK) cells in detail. Here, we demonstrate that induction therapy with rATG following kidney/pancreas transplantation results in a rapid depletion of NK cells. Treatment of NK cells with rATG and alemtuzumab in vitro leads to impairment of cytotoxicity and induction of apoptosis even at a 10-fold lower concentration (0.1 µg/ml) compared with T and B cells. By generating Fc-parts of rATG and alemtuzumab we illustrate that their ligation to FcγRIII (CD16) is sufficient for the significant induction of degranulation, apoptosis and inflammatory cytokine release (FasL, TNFα and IFNγ) exclusively in CD3−CD56dim NK cells whereas application of rATG and alemtuzumab F(ab) fragments abolishes these effects. These findings are of general importance as our data suggest that NK cells are also mediators of the clinically relevant cytokine release syndrome and that their targeting by therapeutic antibodies should be considered as they are functionally relevant for the effective clearance of opportunistic viral infections and anti-tumor activity posttransplantation

    Early-Age-Related Changes in Proteostasis Augment Immunopathogenesis of Sepsis and Acute Lung Injury

    Get PDF
    adult) mechanisms that augment immunopathogenesis of sepsis and acute lung injury. model to standardize the efficacy of salubrinal (inhibitor of eIF2α de-phosphorylation) in controlling the accumulation of ubiquitinated proteins and the NFκB levels. Finally, we evaluated the therapeutic efficacy of salubrinal to correct proteostasis-imbalance in the adult mice based on its ability to control CLP induced IL-6 secretion or recruitment of pro-inflammatory cells.Our data demonstrate the critical role of early-age-related proteostasis-imbalance as a novel mechanism that augments the NFκB mediated inflammation in sepsis and ALI. Moreover, our data suggest the therapeutic efficacy of salubrinal in restraining NFκB mediated inflammation in the adult or older subjects
    corecore