585 research outputs found
The Algebraic Connectivity of a Graph and its Complement
For a graph , let denote its second smallest Laplacian
eigenvalue. It was conjectured that , where is the complement of . In this paper, it is shown
that
Genus Ranges of Chord Diagrams
A chord diagram consists of a circle, called the backbone, with line
segments, called chords, whose endpoints are attached to distinct points on the
circle. The genus of a chord diagram is the genus of the orientable surface
obtained by thickening the backbone to an annulus and attaching bands to the
inner boundary circle at the ends of each chord. Variations of this
construction are considered here, where bands are possibly attached to the
outer boundary circle of the annulus. The genus range of a chord diagram is the
genus values over all such variations of surfaces thus obtained from a given
chord diagram. Genus ranges of chord diagrams for a fixed number of chords are
studied. Integer intervals that can, and cannot, be realized as genus ranges
are investigated. Computer calculations are presented, and play a key role in
discovering and proving the properties of genus ranges.Comment: 12 pages, 8 figure
On the non-ergodicity of the Swendsen-Wang-Kotecky algorithm on the kagome lattice
We study the properties of the Wang-Swendsen-Kotecky cluster Monte Carlo
algorithm for simulating the 3-state kagome-lattice Potts antiferromagnet at
zero temperature. We prove that this algorithm is not ergodic for symmetric
subsets of the kagome lattice with fully periodic boundary conditions: given an
initial configuration, not all configurations are accessible via Monte Carlo
steps. The same conclusion holds for single-site dynamics.Comment: Latex2e. 22 pages. Contains 11 figures using pstricks package. Uses
iopart.sty. Final version accepted in journa
Unboundedness of adjacency matrices of locally finite graphs
Given a locally finite simple graph so that its degree is not bounded, every
self-adjoint realization of the adjacency matrix is unbounded from above. In
this note we give an optimal condition to ensure it is also unbounded from
below. We also consider the case of weighted graphs. We discuss the question of
self-adjoint extensions and prove an optimal criterium.Comment: Typos corrected. Examples added. Cute drawings. Simplification of the
main condition. Case of the weight tending to zero more discussed
The problem of deficiency indices for discrete Schr\"odinger operators on locally finite graphs
The number of self-adjoint extensions of a symmetric operator acting on a
complex Hilbert space is characterized by its deficiency indices. Given a
locally finite unoriented simple tree, we prove that the deficiency indices of
any discrete Schr\"odinger operator are either null or infinite. We also prove
that almost surely, there is a tree such that all discrete Schr\"odinger
operators are essentially self-adjoint. Furthermore, we provide several
criteria of essential self-adjointness. We also adress some importance to the
case of the adjacency matrix and conjecture that, given a locally finite
unoriented simple graph, its the deficiency indices are either null or
infinite. Besides that, we consider some generalizations of trees and weighted
graphs.Comment: Typos corrected. References and ToC added. Paper slightly
reorganized. Section 3.2, about the diagonalization has been much improved.
The older section about the stability of the deficiency indices in now in
appendix. To appear in Journal of Mathematical Physic
1-factorisation of the Composition of Regular Graphs
1-factorability of the composition of graphs is studied. The followings sufficient conditions are proved: is 1-factorable if and are regular and at least one of the following holds: (i) Graphs and both contain a 1-factor, (ii) is 1-factorable (iii) is 1-factorable. It is also shown that the tensor product is 1-factorable, if at least one of two graphs is 1-factorable. This result in turn implies that the strong tensor product is 1-factorable, if is 1-factorable
Spectral partitions on infinite graphs
Statistical models on infinite graphs may exhibit inhomogeneous thermodynamic
behaviour at macroscopic scales. This phenomenon is of geometrical origin and
may be properly described in terms of spectral partitions into subgraphs with
well defined spectral dimensions and spectral weights. These subgraphs are
shown to be thermodynamically homogeneous and effectively decoupled.Comment: 8 pages, to appear on Journal of Physics
Arrow ribbon graphs
We introduce an additional structure on ribbon graphs, arrow structure. We
extend the Bollob\'as-Riordan polynomial to ribbon graph with this structure.
The extended polynomial satisfies the contraction-deletion relations and
naturally behaves with respect to the partial duality of ribbon graphs. We
construct an arrow ribbon graph from a virtual link whose extended
Bollob\'as-Riordan polynomial specializes to the arrow polynomial of the
virtual link recently introduced by H.Dye and L.Kauffman. This result
generalizes the classical Thistlethwaite theorem to the arrow polynomial of
virtual links.Comment: to appear in Journal of Knot Theory and Its Ramification
Enhancing the spectral gap of networks by node removal
Dynamics on networks are often characterized by the second smallest
eigenvalue of the Laplacian matrix of the network, which is called the spectral
gap. Examples include the threshold coupling strength for synchronization and
the relaxation time of a random walk. A large spectral gap is usually
associated with high network performance, such as facilitated synchronization
and rapid convergence. In this study, we seek to enhance the spectral gap of
undirected and unweighted networks by removing nodes because, practically, the
removal of nodes often costs less than the addition of nodes, addition of
links, and rewiring of links. In particular, we develop a perturbative method
to achieve this goal. The proposed method realizes better performance than
other heuristic methods on various model and real networks. The spectral gap
increases as we remove up to half the nodes in most of these networks.Comment: 5 figure
The Large Scale Curvature of Networks
Understanding key structural properties of large scale networks are crucial
for analyzing and optimizing their performance, and improving their reliability
and security. Here we show that these networks possess a previously unnoticed
feature, global curvature, which we argue has a major impact on core
congestion: the load at the core of a network with N nodes scales as N^2 as
compared to N^1.5 for a flat network. We substantiate this claim through
analysis of a collection of real data networks across the globe as measured and
documented by previous researchers.Comment: 4 pages, 5 figure
- …
