585 research outputs found

    The Algebraic Connectivity of a Graph and its Complement

    Full text link
    For a graph GG, let λ2(G)\lambda_2(G) denote its second smallest Laplacian eigenvalue. It was conjectured that λ2(G)+λ2(G)1\lambda_2(G) + \lambda_2(\overline G) \ge 1, where G\overline G is the complement of GG. In this paper, it is shown that max{λ2(G),λ2(G)}2/5\max\{\lambda_2(G), \lambda_2(\overline G)\} \ge 2/5

    Genus Ranges of Chord Diagrams

    Full text link
    A chord diagram consists of a circle, called the backbone, with line segments, called chords, whose endpoints are attached to distinct points on the circle. The genus of a chord diagram is the genus of the orientable surface obtained by thickening the backbone to an annulus and attaching bands to the inner boundary circle at the ends of each chord. Variations of this construction are considered here, where bands are possibly attached to the outer boundary circle of the annulus. The genus range of a chord diagram is the genus values over all such variations of surfaces thus obtained from a given chord diagram. Genus ranges of chord diagrams for a fixed number of chords are studied. Integer intervals that can, and cannot, be realized as genus ranges are investigated. Computer calculations are presented, and play a key role in discovering and proving the properties of genus ranges.Comment: 12 pages, 8 figure

    On the non-ergodicity of the Swendsen-Wang-Kotecky algorithm on the kagome lattice

    Get PDF
    We study the properties of the Wang-Swendsen-Kotecky cluster Monte Carlo algorithm for simulating the 3-state kagome-lattice Potts antiferromagnet at zero temperature. We prove that this algorithm is not ergodic for symmetric subsets of the kagome lattice with fully periodic boundary conditions: given an initial configuration, not all configurations are accessible via Monte Carlo steps. The same conclusion holds for single-site dynamics.Comment: Latex2e. 22 pages. Contains 11 figures using pstricks package. Uses iopart.sty. Final version accepted in journa

    Unboundedness of adjacency matrices of locally finite graphs

    Full text link
    Given a locally finite simple graph so that its degree is not bounded, every self-adjoint realization of the adjacency matrix is unbounded from above. In this note we give an optimal condition to ensure it is also unbounded from below. We also consider the case of weighted graphs. We discuss the question of self-adjoint extensions and prove an optimal criterium.Comment: Typos corrected. Examples added. Cute drawings. Simplification of the main condition. Case of the weight tending to zero more discussed

    The problem of deficiency indices for discrete Schr\"odinger operators on locally finite graphs

    Get PDF
    The number of self-adjoint extensions of a symmetric operator acting on a complex Hilbert space is characterized by its deficiency indices. Given a locally finite unoriented simple tree, we prove that the deficiency indices of any discrete Schr\"odinger operator are either null or infinite. We also prove that almost surely, there is a tree such that all discrete Schr\"odinger operators are essentially self-adjoint. Furthermore, we provide several criteria of essential self-adjointness. We also adress some importance to the case of the adjacency matrix and conjecture that, given a locally finite unoriented simple graph, its the deficiency indices are either null or infinite. Besides that, we consider some generalizations of trees and weighted graphs.Comment: Typos corrected. References and ToC added. Paper slightly reorganized. Section 3.2, about the diagonalization has been much improved. The older section about the stability of the deficiency indices in now in appendix. To appear in Journal of Mathematical Physic

    1-factorisation of the Composition of Regular Graphs

    No full text
    1-factorability of the composition of graphs is studied. The followings sufficient conditions are proved: G[H]G[H] is 1-factorable if GG and HH are regular and at least one of the following holds: (i) Graphs GG and HH both contain a 1-factor, (ii) GG is 1-factorable (iii) HH is 1-factorable. It is also shown that the tensor product GHG\otimes H is 1-factorable, if at least one of two graphs is 1-factorable. This result in turn implies that the strong tensor product GHG\otimes' H is 1-factorable, if GG is 1-factorable

    Spectral partitions on infinite graphs

    Full text link
    Statistical models on infinite graphs may exhibit inhomogeneous thermodynamic behaviour at macroscopic scales. This phenomenon is of geometrical origin and may be properly described in terms of spectral partitions into subgraphs with well defined spectral dimensions and spectral weights. These subgraphs are shown to be thermodynamically homogeneous and effectively decoupled.Comment: 8 pages, to appear on Journal of Physics

    Arrow ribbon graphs

    Full text link
    We introduce an additional structure on ribbon graphs, arrow structure. We extend the Bollob\'as-Riordan polynomial to ribbon graph with this structure. The extended polynomial satisfies the contraction-deletion relations and naturally behaves with respect to the partial duality of ribbon graphs. We construct an arrow ribbon graph from a virtual link whose extended Bollob\'as-Riordan polynomial specializes to the arrow polynomial of the virtual link recently introduced by H.Dye and L.Kauffman. This result generalizes the classical Thistlethwaite theorem to the arrow polynomial of virtual links.Comment: to appear in Journal of Knot Theory and Its Ramification

    Enhancing the spectral gap of networks by node removal

    Full text link
    Dynamics on networks are often characterized by the second smallest eigenvalue of the Laplacian matrix of the network, which is called the spectral gap. Examples include the threshold coupling strength for synchronization and the relaxation time of a random walk. A large spectral gap is usually associated with high network performance, such as facilitated synchronization and rapid convergence. In this study, we seek to enhance the spectral gap of undirected and unweighted networks by removing nodes because, practically, the removal of nodes often costs less than the addition of nodes, addition of links, and rewiring of links. In particular, we develop a perturbative method to achieve this goal. The proposed method realizes better performance than other heuristic methods on various model and real networks. The spectral gap increases as we remove up to half the nodes in most of these networks.Comment: 5 figure

    The Large Scale Curvature of Networks

    Full text link
    Understanding key structural properties of large scale networks are crucial for analyzing and optimizing their performance, and improving their reliability and security. Here we show that these networks possess a previously unnoticed feature, global curvature, which we argue has a major impact on core congestion: the load at the core of a network with N nodes scales as N^2 as compared to N^1.5 for a flat network. We substantiate this claim through analysis of a collection of real data networks across the globe as measured and documented by previous researchers.Comment: 4 pages, 5 figure
    corecore