2,529 research outputs found

    Baby MIND: A magnetised spectrometer for the WAGASCI experiment

    Get PDF
    The WAGASCI experiment being built at the J-PARC neutrino beam line will measure the difference in cross sections from neutrinos interacting with a water and scintillator targets, in order to constrain neutrino cross sections, essential for the T2K neutrino oscillation measurements. A prototype Magnetised Iron Neutrino Detector (MIND), called Baby MIND, is being constructed at CERN to act as a magnetic spectrometer behind the main WAGASCI target to be able to measure the charge and momentum of the outgoing muon from neutrino charged current interactions.Comment: Poster presented at NuPhys2016 (London, 12-14 December 2016). Title + 4 pages, LaTeX, 6 figure

    Baby MIND Experiment Construction Status

    Get PDF
    Baby MIND is a magnetized iron neutrino detector, with novel design features, and is planned to serve as a downstream magnetized muon spectrometer for the WAGASCI experiment on the T2K neutrino beam line in Japan. One of the main goals of this experiment is to reduce systematic uncertainties relevant to CP-violation searches, by measuring the neutrino contamination in the anti-neutrino beam mode of T2K. Baby MIND is currently being constructed at CERN, and is planned to be operational in Japan in October 2017.Comment: Poster presented at NuPhys2016 (London, 12-14 December 2016). 4 pages, LaTeX, 7 figure

    Baby MIND: A magnetized segmented neutrino detector for the WAGASCI experiment

    Get PDF
    T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280~m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295~km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.Comment: In new version: modified both plots of Fig.1 and added one sentence in the introduction part explaining Baby MIND role in WAGASCI experiment, added information for the affiliation

    Quantum numbers of the X(3872)X(3872) state and orbital angular momentum in its ρ0Jψ\rho^0 J\psi decay

    Get PDF
    Angular correlations in B+X(3872)K+B^+\to X(3872) K^+ decays, with X(3872)ρ0J/ψX(3872)\to \rho^0 J/\psi, ρ0π+π\rho^0\to\pi^+\pi^- and J/ψμ+μJ/\psi \to\mu^+\mu^-, are used to measure orbital angular momentum contributions and to determine the JPCJ^{PC} value of the X(3872)X(3872) meson. The data correspond to an integrated luminosity of 3.0 fb1^{-1} of proton-proton collisions collected with the LHCb detector. This determination, for the first time performed without assuming a value for the orbital angular momentum, confirms the quantum numbers to be JPC=1++J^{PC}=1^{++}. The X(3872)X(3872) is found to decay predominantly through S wave and an upper limit of 4%4\% at 95%95\% C.L. is set on the fraction of D wave.Comment: 16 pages, 4 figure

    Interim Design Report

    Get PDF
    The International Design Study for the Neutrino Factory (the IDS-NF) was established by the community at the ninth "International Workshop on Neutrino Factories, super-beams, and beta- beams" which was held in Okayama in August 2007. The IDS-NF mandate is to deliver the Reference Design Report (RDR) for the facility on the timescale of 2012/13. In addition, the mandate for the study [3] requires an Interim Design Report to be delivered midway through the project as a step on the way to the RDR. This document, the IDR, has two functions: it marks the point in the IDS-NF at which the emphasis turns to the engineering studies required to deliver the RDR and it documents baseline concepts for the accelerator complex, the neutrino detectors, and the instrumentation systems. The IDS-NF is, in essence, a site-independent study. Example sites, CERN, FNAL, and RAL, have been identified to allow site-specific issues to be addressed in the cost analysis that will be presented in the RDR. The choice of example sites should not be interpreted as implying a preferred choice of site for the facility

    Observation of two new Ξb\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξb\Xi_b^{\prime -} and Ξb\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξb)m(Ξb0)m(π)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb)m(Ξb0)m(π)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξb)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure

    Observation of the decay BcJ/ψK+Kπ+B_c \rightarrow J/\psi K^+ K^- \pi^+

    Get PDF
    The decay BcJ/ψK+Kπ+B_c\rightarrow J/\psi K^+ K^- \pi^+ is observed for the first time, using proton-proton collisions collected with the LHCb detector corresponding to an integrated luminosity of 3fb1^{-1}. A signal yield of 78±1478\pm14 decays is reported with a significance of 6.2 standard deviations. The ratio of the branching fraction of \B_c \rightarrow J/\psi K^+ K^- \pi^+ decays to that of BcJ/ψπ+B_c \rightarrow J/\psi \pi^+ decays is measured to be 0.53±0.10±0.050.53\pm 0.10\pm0.05, where the first uncertainty is statistical and the second is systematic.Comment: 18 pages, 2 figure

    Observation of associated production of a ZZ boson with a DD meson in the~forward region

    Get PDF
    A search for associated production of a ZZ boson with an open charm meson is presented using a data sample, corresponding to an integrated luminosity of 1.0fb1.0\,\mathrm{fb}^{-`} of proton--proton collisions at a centre-of-mass energy of 7\,TeV, collected by the LHCb experiment. %% Seven candidate events for associated production of a ZZ boson with a D0D^0 meson and four candidate events for a ZZ boson with a D+D^+ meson are observed with a combined significance of 5.1standard deviations. The production cross-sections in the forward region are measured to be σZμ+μ ⁣,D0=2.50±1.12±0.22pb\sigma_{Z\rightarrow\mu^+\mu^-\!,D^0} = 2.50\pm1.12\pm0.22pb σZμ+μ ⁣,D+=0.44±0.23±0.03pb,\sigma_{Z\rightarrow\mu^+\mu^-\!,D^+} = 0.44\pm0.23\pm0.03pb, where the first uncertainty is statistical and the second systematic.Comment: 18 pages, 2 figure
    corecore