4,332 research outputs found

    Test of a universality ansatz for the contact values of the radial distribution functions of hard-sphere mixtures near a hard wall

    Get PDF
    Recent Monte Carlo simulation results for the contact values of polydisperse hard-sphere mixtures at a hard planar wall are considered in the light of a universality assumption made in approximate theoretical approaches. It is found that the data seem to fulfill the universality ansatz reasonably well, thus opening up the possibility of inferring properties of complicated systems from the study of simpler onesComment: 9 pages, 2 figures; v2: minor changes; to be published in the special issue of Molecular Physics dedicated to the Seventh Liblice Conference on the Statistical Mechanics of Liquids (Lednice, Czech Republic, June 11-16, 2006

    Communication: Inferring the equation of state of a metastable hard-sphere fluid from the equation of state of a hard-sphere mixture at high densities

    Full text link
    A possible approximate route to obtain the equation of state of the monodisperse hard-sphere system in the metastable fluid region from the knowledge of the equation of state of a hard-sphere mixture at high densities is discussed. The proposal is illustrated by using recent Monte Carlo simulation data for the pressure of a binary mixture. It is further shown to exhibit high internal consistency.Comment: 4 pages, 2 figures; v2: Simulation data for one-component hard spheres included in Fig.

    Molecular kinetics of solid and liquid CHCl3_3

    Get PDF
    We present a detailed analysis of the molecular kinetics of CHCl3_3 in a range of temperatures covering the solid and liquid phases. Using nuclear quadrupolar resonance we determine the relaxation times for the molecular rotations in solid at pre-melting conditions. Molecular dynamics simulations are used to characterize the rotational dynamics in the solid and liquid phases and to study the local structure of the liquid in terms of the molecular relative orientations. We find that in the pre-melting regime the molecules rotate about the C-H bond, but the rotations are isotropic in the liquid, even at supercooled conditions.Comment: Chemical Physics Letter (in press). 14 pages, 7 figure

    Contact values of the particle-particle and wall-particle correlation functions in a hard-sphere polydisperse fluid

    Full text link
    The contact values g(σ,σ′)g(\sigma,\sigma') of the radial distribution functions of a fluid of (additive) hard spheres with a given size distribution f(σ)f(\sigma) are considered. A ``universality'' assumption is introduced, according to which, at a given packing fraction η\eta, g(σ,σ′)=G(z(σ,σ′))g(\sigma,\sigma')=G(z(\sigma,\sigma')), where GG is a common function independent of the number of components (either finite or infinite) and z(σ,σ′)=[2σσ′/(σ+σ′)]μ2/μ3z(\sigma,\sigma')=[2 \sigma \sigma'/(\sigma+\sigma')]\mu_2/\mu_3 is a dimensionless parameter, μn\mu_n being the nn-th moment of the diameter distribution. A cubic form proposal for the zz-dependence of GG is made and known exact consistency conditions for the point particle and equal size limits, as well as between two different routes to compute the pressure of the system in the presence of a hard wall, are used to express G(z)G(z) in terms of the radial distribution at contact of the one-component system. For polydisperse systems we compare the contact values of the wall-particle correlation function and the compressibility factor with those obtained from recent Monte Carlo simulations.Comment: 9 pages, 7 figure

    Contact values of the radial distribution functions of additive hard-sphere mixtures in d dimensions: A new proposal

    Full text link
    The contact values gij(σij)g_{ij}(\sigma_{ij}) of the radial distribution functions of a dd-dimensional mixture of (additive) hard spheres are considered. A `universality' assumption is put forward, according to which gij(σij)=G(η,zij)g_{ij}(\sigma_{ij})=G(\eta, z_{ij}), where GG is a common function for all the mixtures of the same dimensionality, regardless of the number of components, η\eta is the packing fraction of the mixture, and zijz_{ij} is a dimensionless parameter that depends on the size distribution and the diameters of spheres ii and jj. For d=3d=3, this universality assumption holds for the contact values of the Percus--Yevick approximation, the Scaled Particle Theory, and, consequently, the Boublik--Grundke--Henderson--Lee--Levesque approximation. Known exact consistency conditions are used to express G(η,0)G(\eta,0), G(η,1)G(\eta,1), and G(η,2)G(\eta,2) in terms of the radial distribution at contact of the one-component system. Two specific proposals consistent with the above conditions (a quadratic form and a rational form) are made for the zz-dependence of G(η,z)G(\eta,z). For one-dimensional systems, the proposals for the contact values reduce to the exact result. Good agreement between the predictions of the proposals and available numerical results is found for d=2d=2, 3, 4, and 5.Comment: 10 pages, 11 figures; Figure 1 changed; Figure 5 is new; New references added; accepted for publication in J. Chem. Phy

    EDITORIAL

    Get PDF
    The need for diversification of the global energy grid is present in the speeches of most governments, the motivation of scientists and the perception of a growing segment of the population. Even so, the dependence on non-renewable fuels, such as fossil fuels, has been increasing progressively due to the rapid global growth, rising consumption and increasing purchasing power of the population. Besides searching global solutions to resolve the energy quest, efforts must be directed to short-term actions, taking advantage of the available scientific and technological knowledge to improve the performance of existing systems and in use today. Improving the efficiency of cooling systems, which are responsible for much of the world electricity consumption through intelligent control of compressors can reduce up to 50% electricity consumption, and thus provide economic and strategic advantages to countries that encourage this type of initiative. Likewise, the reduction of electricity for domestic heating or showering can be obtained by waste heat recovery, solar heating or the use of heat pumps with immersed condensers, among others, contributing to the reduction of electric energy consumption. A challenge to be overcome is the popularization of such technologies in the form of final product at affordable costs. Also, for popular use, it is the important the interest of nation leaders in order to drive the use of those technologies through tax incentives and public policies. Other advances could be achieved by the use and improvement of biotechnological processes, coupling the treatment of emissions and effluents to the production of biofuels, as well as high aggregated value products. Through exergy analysis, thermoeconomics, mathematical modeling, simulation and optimization, thermal engineering is able to contribute to the efficient coupling of such different biotechnological processes and contribute to decreasing dependence on fossil fuels

    Fourth virial coefficients of asymmetric nonadditive hard-disc mixtures

    Full text link
    The fourth virial coefficient of asymmetric nonadditive binary mixtures of hard disks is computed with a standard Monte Carlo method. Wide ranges of size ratio (0.05≤q≤0.950.05\leq q\leq 0.95) and nonadditivity (−0.5≤Δ≤0.5-0.5\leq \Delta\leq 0.5) are covered. A comparison is made between the numerical results and those that follow from some theoretical developments. The possible use of these data in the derivation of new equations of state for these mixtures is illustrated by considering a rescaled virial expansion truncated to fourth order. The numerical results obtained using this equation of state are compared with Monte Carlo simulation data in the case of a size ratio q=0.7q=0.7 and two nonadditivities Δ=±0.2\Delta=\pm 0.2.Comment: 9 pages, 7 figures; v2: section on equation of state added; tables moved to supplementary material (http://jcp.aip.org/resource/1/jcpsa6/v136/i18/p184505_s1#artObjSF
    • …
    corecore