4,830 research outputs found
FUSE Observations of the Magellanic Bridge Gas toward Two Early-Type Stars: Molecules, Physical Conditions, and Relative Abundance
We discuss FUSE observations of two early-type stars, DI1388 and DGIK975, in
the low density and low metallicity gas of Magellanic Bridge (MB). Toward
DI1388, the FUSE observations show molecular hydrogen, O VI, and numerous other
atomic or ionic transitions in absorption, implying the presence of multiple
gas phases in a complex arrangement. The relative abundance pattern in the MB
is attributed to varying degrees of depletion onto dust similar to that of halo
clouds. The N/O ratio is near solar, much higher than N/O in damped Ly-alpha
systems, implying subsequent stellar processing to explain the origin of
nitrogen in the MB. The diffuse molecular cloud in this direction has a low
column density and low molecular fraction. H2 is observed in both the
Magellanic Stream and the MB, yet massive stars form only in the MB, implying
significantly different physical processes between them. In the MB some of the
H2 could have been pulled out from the SMC via tidal interaction, but some also
could have formed in situ in dense clouds where star formation might have taken
place. Toward DGIK975, the presence of neutral, weakly and highly ionized
species suggest that this sight line has also several complex gas phases. The
highly ionized species of O VI, C IV, and Si IV toward both stars have very
broad features, indicating that multiple components of hot gas at different
velocities are present. Several sources (a combination of turbulent mixing
layer, conductive heating, and cooling flows) may be contributing to the
production of the highly ionized gas in the MB. Finally, this study has
confirmed previous results that the high-velocity cloud HVC 291.5-41.2+80 is
mainly ionized composed of weakly and highly ions. The high ion ratios are
consistent with a radiatively cooling gas in a fountain flow model.Comment: Accepted for publication in the ApJ (October 10, 2002). Added
reference (Gibson et al. 2000
Low Redshift Intergalactic Absorption Lines in the Spectrum of HE0226-4110
We present an analysis of the FUSE and STIS E140M spectra of HE0226-4110
(z=0.495). We detect 56 Lyman absorbers and 5 O VI absorbers. The number of
intervening O VI systems per unit redshift with W>50 m\AA is dN(O VI)/dz~ 11.
The O VI systems unambiguously trace hot gas only in one case. For the 4 other
O VI systems, photoionization and collisional ionization models are viable
options to explain the observed column densities of the O VI and the other
ions. If the O VI systems are mostly photoionized, only a fraction of the
observed O VI will contribute to the baryonic density of the warm-hot ionized
medium (WHIM) along this line of sight. Combining our results with previous
ones, we show that there is a general increase of N(O VI) with increasing b(O
VI). Cooling flow models can reproduce the N-b distribution but fail to
reproduce the observed ionic ratios. A comparison of the number of O I, O II, O
III, O IV, and O VI systems per unit redshift show that the low-z IGM is more
highly ionized than weakly ionized. We confirm that photoionized O VI systems
show a decreasing ionization parameter with increasing H I column density. O VI
absorbers with collisional ionization/photoionization degeneracy follow this
relation, possibly suggesting that they are principally photoionized. We find
that the photoionized O VI systems in the low redshift IGM have a median
abundance of 0.3 solar. We do not find additional Ne VIII systems other than
the one found by Savage et al., although our sensitivity should have allowed
the detection of Ne VIII in O VI systems at T~(0.6-1.3)x10^6 K (if CIE
applies). Since the bulk of the WHIM is believed to be at temperatures T>10^6
K, the hot part of the WHIM remains to be discovered with FUV--EUV metal-line
transitions.Comment: Accepted for publication in the ApJS. Full resolution figures
available at
http://www.journals.uchicago.edu/ApJ/journal/preprints/ApJS63975.preprint.pd
Microlensing of Kepler Stars as a Method of Detecting Primordial Black Hole Dark Matter
If the Dark Matter consists of primordial black holes (PBHs), we show that
gravitational lensing of stars being monitored by NASA's Kepler search for
extra-solar planets can cause significant numbers of detectable microlensing
events. A search through the roughly 150,000 lightcurves would result in large
numbers of detectable events for PBHs in the mass range 5 \ten{-10}\msun to
\aten{-4}\msun. Non-detection of these events would close almost two orders
of magnitude of the mass window for PBH dark matter. The microlensing rate is
higher than previously noticed due to a combination of the exceptional
photometric precision of the Kepler mission and the increase in cross section
due to the large angular sizes of the relatively nearby Kepler field stars. We
also present a new formalism for calculating optical depth and microlensing
rates in the presence of large finite-source effects.Comment: 5 pages, 1 figur
Deuterium toward the WD0621-376 sight line: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission
Far Ultraviolet Spectroscopic Explorer observations are presented for
WD0621-376, a DA white dwarf star in the local interstellar medium (LISM) at a
distance of about 78 pc. The data have a signal-to-noise ratio of about 20-40
per 20 km/s resolution element and cover the wavelength range 905-1187 \AA.
LISM absorption is detected in the lines of D I, C II, C II*, C III, N I, N II,
N III, O I, Ar I, and Fe II. This sight line is partially ionized, with an
ionized nitrogen fraction of > 0.23. We determine the ratio (2). Assuming a standard interstellar
oxygen abundance, we derive . Using the
value of N(H I) derived from EUVE data gives a similar D/H ratio. The D I/N I
ratio is (2).Comment: accepted for publication in the ApJ
Head-on collisions of boson stars
We study head-on collisions of boson stars in three dimensions. We consider
evolutions of two boson stars which may differ in their phase or have opposite
frequencies but are otherwise identical. Our studies show that these phase
differences result in different late time behavior and gravitational wave
output
Hydroxymethylated Cytosines Are Associated with Elevated C to G Transversion Rates
It has long been known that methylated cytosines deaminate at higher rates than unmodified cytosines and constitute mutational hotspots in mammalian genomes. The repertoire of naturally occurring cytosine modifications, however, extends beyond 5-methylcytosine to include its oxidation derivatives, notably 5-hydroxymethylcytosine. The effects of these modifications on sequence evolution are unknown. Here, we combine base-resolution maps of methyl- and hydroxymethylcytosine in human and mouse with population genomic, divergence and somatic mutation data to show that hydroxymethylated and methylated cytosines show distinct patterns of variation and evolution. Surprisingly, hydroxymethylated sites are consistently associated with elevated C to G transversion rates at the level of segregating polymorphisms, fixed substitutions, and somatic mutations in tumors. Controlling for multiple potential confounders, we find derived C to G SNPs to be 1.43-fold (1.22-fold) more common at hydroxymethylated sites compared to methylated sites in human (mouse). Increased C to G rates are evident across diverse functional and sequence contexts and, in cancer genomes, correlate with the expression of Tet enzymes and specific components of the mismatch repair pathway (MSH2, MSH6, and MBD4). Based on these and other observations we suggest that hydroxymethylation is associated with a distinct mutational burden and that the mismatch repair pathway is implicated in causing elevated transversion rates at hydroxymethylated cytosines
Numerical Simulations of Hyperfine Transitions of Antihydrogen
One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow
Antiprotons) collaboration's goals is the measurement of the ground state
hyperfine transition frequency in antihydrogen, the antimatter counterpart of
one of the best known systems in physics. This high precision experiment yields
a sensitive test of the fundamental symmetry of CPT. Numerical simulations of
hyperfine transitions of antihydrogen atoms have been performed providing
information on the required antihydrogen events and the achievable precision
- …