49 research outputs found

    FRP-to-masonry bond durability assessment with infrared thermography method

    Get PDF
    The bond behavior between FRP composites and masonry substrate plays an important role in the performance of externally bonded reinforced masonry structures. Therefore, monitoring the bond quality during the application and subsequent service life of a structure is of crucial importance for execution control and structural health monitoring. The bond quality can change during the service life of the structure due to environmental conditions. Local detachments may occur at the FRP/substrate interface, affecting the bond performance to a large extent. Therefore, the use of expedite and efficient non-destructive techniques for assessment of the bond quality and monitoring FRP delamination is of much interest. Active infrared thermography (IR) technique was used in this study for assessing the bond quality in environmentally degraded FRP-strengthened masonry elements. The applicability and accuracy of the adopted method was initially validated by localization and size quantification of artificially embedded defects in FRP-strengthened brick specimens. Then, the method was used for investigating the appearance and progression of FRP delaminations due to environmental conditions. GFRP-strengthened brick specimens were exposed to accelerated hygrothermal ageing tests and inspected periodically with the IR camera. The results showed environmental exposure may produce large progressive FRP delaminations.Fundação para a CiĂȘncia e Tecnologi

    Late Archean euxinic conditions before the rise of atmospheric oxygen

    No full text
    Life on Earth is thought to have coevolved with the chemistry of the oceans and atmosphere, and the shift from an anoxic to an oxic world across the Archean-Proterozoic boundary represents a fundamental step in this process. In order to understand the relative influence of biological and geological factors on this transition, we must constrain key variables in seawater chemistry before the Great Oxidation Event (ca. 2500 Ma). We present a multi-element (C-S-Fe-Mo) biogeochemical study of ca. 2662 Ma shales from the Hamersley Province in Western Australia. Our data reveal a sustained episode of Fe-limited pyrite formation under an anoxic and sulfidic (euxinic) water column. This is the oldest known occurrence of euxinia in Earth’s history and challenges the paradigm of persistently Fe-rich Archean oceans. Bulk trace metal chemistry and preservation of strong mass-independent S isotope fractionations in sedimentary pyrites indicate that ocean euxinia was possible prior to oxidative weathering, suggesting that sulfidic waters may have been common throughout the Archean Eon. C-S-Fe systematics suggest that oxygenic photosynthesis was the primary source of organic carbon in the basin, and the absence of Mo enrichments highlights a potential link between inefficient nitrogen fixation and the delayed arrival of the Great Oxidation Event

    Replacement origin for hematite in 2.5 Ga banded iron formation: Evidence for postdepositional oxidation of iron-bearing minerals

    No full text
    Banded iron formations (BIFs) are central to interpretations about the composition of the Precambrian ocean, atmosphere, and biosphere. Hematite is an important component of many BIFs, and its presence has been used as evidence for the former presence of hydrous ferric oxyhydroxides that formed from the oxidation of dissolved ferrous iron in seawater. However, textural evidence for the origin of hematite is equivocal. New petrographic results show that hematite in unmineralized BIF from the ca. 2.5 Ga Dales Gorge Member of the Brockman Iron Formation, Hamersley Group, Western Australia, including morphologies previously interpreted to represent ferric oxyhydroxide precipitates, formed via fluid-mediated replacement of iron-silicates and iron-carbonates along sedimentary layering. The lateral transition from stilpnomelane- and siderite rich laminae to hematite-dominated laminae is interpreted to reflect progressive stages of in situ alteration of reduced mineral assemblages by oxygen-bearing fluids rather than changes in the chemistry of the water column during deposition. Although morphologies previously ascribed to “primary” hematite are present, they are related to mineral replacement reactions, raising doubts about the petrographic criteria used to identify original hematite. Hematite replacement in unmineralized BIF postdated deposition and possibly metamorphism, and predated modern weathering.From a regional perspective, it appears to be a distal signature of the processes that were responsible for iron-ore mineralization, which involved the deep infiltration of oxygen-bearing meteoric fluids. The mineral replacement reactions recorded in the Dales Gorge Member are unlikely to be unique and probably occurred in BIFs elsewhere at some point in their history. The observation that at least some of the hematite in unmineralized BIF did not form directly from ferric oxyhydroxides implies that hematite is not a reliable proxy for the composition of the precursor sediment or the redox chemistry of the ocean. The oxidation of ferrous rich phases after deposition suggests that the precursor sediments of BIF originally had a more reduced bulk composition. This raises the possibility that, in an ocean with negligible molecular oxygen and elevated Si and Fe, the growth of iron-rich clay minerals was favored over hematite
    corecore