667 research outputs found
Deep-water sediment wave formation: Linear stability analysis of coupled flow/bed interaction
International audienceA linear stability analysis is carried out for the interaction of an erodible sediment bed with a sediment-laden, stratified flow above the bed, such as a turbidity or bottom current. The fluid motion is described by the full, two-dimensional Navier-Stokes equations in the Boussinesq approximation, while erosion is modelled as a diffusive flux of particles from the bed into the fluid. The stability analysis shows the existence of both Tollmien-Schlichting and internal wave modes in the stratified boundary layer. For the internal wave mode, the stratified boundary layer acts as a wave duct, whose height can be determined analytically from the Brunt-Val frequency criterion. Consistent with this criterion, distinct unstable perturbation wavenumber regimes exist for the internal wave mode, which are associated with different numbers of pressure extrema in the wall-normal direction. For representative turbidity current parameters, the analysis predicts unstable wavelengths that are consistent with field observations. As a key condition for instability to occur, the base flow velocity boundary layer needs to be thinner than the corresponding concentration boundary layer. For most of the unstable wavenumber ranges, the phase relations between the sediment bed deformation and the associated wall shear stress and concentration perturbations are such that the sediment waves migrate in the upstream direction, which again is consistent with field observations. © 2011 Cambridge University Press
Neutrinos And Big Bang Nucleosynthesis
The early universe provides a unique laboratory for probing the frontiers of
particle physics in general and neutrino physics in particular. The primordial
abundances of the relic nuclei produced during the first few minutes of the
evolution of the Universe depend on the electron neutrinos through the
charged-current weak interactions among neutrons and protons (and electrons and
positrons and neutrinos), and on all flavors of neutrinos through their
contributions to the total energy density which regulates the universal
expansion rate. The latter contribution also plays a role in determining the
spectrum of the temperature fluctuations imprinted on the Cosmic Background
Radiation (CBR) some 400 thousand years later. Using deuterium as a baryometer
and helium-4 as a chronometer, the predictions of BBN and the CBR are compared
to observations. The successes of, as well as challenges to the standard models
of particle physics and cosmology are identified. While systematic
uncertainties may be the source of some of the current tensions, it could be
that the data are pointing the way to new physics. In particular, BBN and the
CBR are used to address the questions of whether or not the relic neutrinos
were fully populated in the early universe and, to limit the magnitude of any
lepton asymmetry which may be concealed in the neutrinos.Comment: Accepted for publication in the Proceedings of Nobel Symposium 129,
"Neutrino Physics"; to appear in Physics Scripta, eds., L Bergstrom, O.
Botner, P. Carlson, P. O. Hulth, and T. Ohlsso
Diffusion and jump-length distribution in liquid and amorphous CuZr
Using molecular dynamics simulation, we calculate the distribution of atomic
jum ps in CuZr in the liquid and glassy states. In both states
the distribution of jump lengths can be described by a temperature independent
exponential of the length and an effective activation energy plus a
contribution of elastic displacements at short distances. Upon cooling the
contribution of shorter jumps dominates. No indication of an enhanced
probability to jump over a nearest neighbor distance was found. We find a
smooth transition from flow in the liquid to jumps in the g lass. The
correlation factor of the diffusion constant decreases with decreasing
temperature, causing a drop of diffusion below the Arrhenius value, despite an
apparent Arrhenius law for the jump probability
The Effect of Bound Dineutrons upon BBN
We have examined the effects of a bound dineutron, n2, upon big bang
nucleosynthesis (BBN) as a function of its binding energy B_n2. We find a
weakly bound dineutron has little impact but as B_n2 increases its presence
begins to alter the flow of free nucleons to helium-4. Due to this disruption,
and in the absence of changes to other binding energies or fundamental
constants, BBN sets a reliable upper limit of B_n2 <~ 2.5 MeV in order to
maintain the agreement with the observations of the primordial helium-4 mass
fraction and D/H abundance
Dynamics of ions in the selectivity filter of the KcsA channel
The statistical and dynamical properties of ions in the selectivity filter of the KcsA ion channel are considered on the basis of molecular dynamics (MD) simulations of the KcsA protein embedded in a lipid membrane surrounded by an ionic solution. A new approach to the derivation of a Brownian dynamics (BD) model of ion permeation through the filter is discussed, based on unbiased MD simulations. It is shown that depending on additional assumptions, ion’s dynamics can be described either by under-damped Langevin equation with constant damping and white noise or by Langevin equation with a fractional memory kernel. A comparison of the potential of the mean force derived from unbiased MD simulations with the potential produced by the umbrella sampling method demonstrates significant differences in these potentials. The origin of these differences is an open question that requires further clarifications
Bottom currents, submarine mass failures and halokinesis at the toe of the Sigsbee Escarpment (Gulf of Mexico) : Contrasting regimes during lowstand and highstand conditions?
We are grateful to BP for the provision of both sea-floor and subsurface data. We thank the journal editor Michele Rebesco for his continuous support, and Lorena Moscardelli, Daniele Casalbore and an anonymous reviewer for their detailed and constructive comments, which have allowed us to considerably improve the manuscript.Peer reviewedPostprin
Analytical and computational study of magnetization switching in kinetic Ising systems with demagnetizing fields
An important aspect of real ferromagnetic particles is the demagnetizing
field resulting from magnetostatic dipole-dipole interaction, which causes
large particles to break up into domains. Sufficiently small particles,
however, remain single-domain in equilibrium. This makes such small particles
of particular interest as materials for high-density magnetic recording media.
In this paper we use analytic arguments and Monte Carlo simulations to study
the effect of the demagnetizing field on the dynamics of magnetization
switching in two-dimensional, single-domain, kinetic Ising systems. For systems
in the ``Stochastic Region,'' where magnetization switching is on average
effected by the nucleation and growth of fewer than two well-defined critical
droplets, the simulation results can be explained by the dynamics of a simple
model in which the free energy is a function only of magnetization. In the
``Multi-Droplet Region,'' a generalization of Avrami's Law involving a
magnetization-dependent effective magnetic field gives good agreement with our
simulations.Comment: 29 pages, REVTeX 3.0, 10 figures, 2 more figures by request.
Submitted Phys. Rev.
Collective neutrino flavor transitions in supernovae and the role of trajectory averaging
Non-linear effects on supernova neutrino oscillations, associated with
neutrino self-interactions, are known to induce collective flavor transitions
near the supernova core for theta_13 \neq 0. In scenarios with very shallow
electron density profiles, these transformations have been shown to couple with
ordinary matter effects, jointly producing spectral distortions both in normal
and inverted hierarchy. In this work we consider a complementary scenario,
characterized by higher electron density, as indicated by post-bounce
shock-wave simulations. In this case, early collective flavor transitions are
decoupled from later, ordinary matter effects. Moreover, such transitions
become more amenable to both numerical computations and analytical
interpretations in inverted hierarchy, while they basically vanish in normal
hierarchy. We numerically evolve the neutrino density matrix in the region
relevant for self-interaction effects. In the approximation of averaged
intersection angle between neutrino trajectories, our simulations neatly show
the collective phenomena of synchronization, bipolar oscillations, and spectral
split, recently discussed in the literature. In the more realistic (but
computationally demanding) case of non-averaged neutrino trajectories, our
simulations do not show new significant features, apart from the smearing of
``fine structures'' such as bipolar nutations. Our results seem to suggest
that, at least for non-shallow matter density profiles, averaging over neutrino
trajectories plays a minor role in the final outcome. In this case, the swap of
nu_e and nu_{\mu,\tau} spectra above a critical energy may represent an
unmistakable signature of the inverted hierarchy, especially for theta_{13}
small enough to render further matter effects irrelevant.Comment: v2 (27 pages, including 9 eps figures). Typos removed, references
updated. Minor comments added. Corrected numerical errors in Eq.(6). Matches
the published versio
Active-sterile neutrino oscillations in the early Universe: asymmetry generation at low |delta m^2| and the Landau-Zener approximation
It is well established that active-sterile neutrino oscillations generate
large neutrino asymmetries for very small mixing angles (), negative values of and provided that
. By numerically solving the quantum
kinetic equations, we show that the generation still occurs at much lower
values of . We also describe the borders of the generation at
small mixing angles and show how our numerical results can be analytically
understood within the framework of the Landau-Zener approximation thereby
extending previous work based on the adiabatic limit. This approximate approach
leads to a fair description of the MSW dominated regime of the neutrino
asymmetry evolution and is also able to correctly reproduce its final value. We
also briefly discuss the impact that neutrino asymmetry generation could have
on big bang nucleosynthesis, CMBR and relic neutrinos.Comment: 29 pages, 8 figures; to appear on Phys. ReV. D; figure 7 added, new
curves in figure 5a, new figure
Fermion Masses and Mixing in Extended Technicolor Models
We study fermion masses and mixing angles, including the generation of a
seesaw mechanism for the neutrinos, in extended technicolor (ETC) theories. We
formulate an approach to these problems that relies on assigning right-handed
quarks and charged leptons to ETC representations that are conjugates
of those of the corresponding left-handed fermions. This leads to a natural
suppression of these masses relative to the quarks, as well as the
generation of quark mixing angles, both long-standing challenges for ETC
theories. Standard-model-singlet neutrinos are assigned to ETC representations
that provide a similar suppression of neutrino Dirac masses, as well as the
possibility of a realistic seesaw mechanism with no mass scale above the
highest ETC scale of roughly TeV. A simple model based on the ETC group
SU(5) is constructed and analyzed. This model leads to non-trivial, but not
realistic mixing angles in the quark and lepton sectors. It can also produce
sufficiently light neutrinos, although not simultaneously with a realistic
quark spectrum. We discuss several aspects of the phenomenology of this class
of models.Comment: 74 pages, revtex with embedded figure
- …
