76 research outputs found

    Power-law estimates for the central limit theorem for convex sets

    Full text link
    We investigate the rate of convergence in the central limit theorem for convex sets. We obtain bounds with a power-law dependence on the dimension. These bounds are asymptotically better than the logarithmic estimates which follow from the original proof of the central limit theorem for convex sets.Comment: 31 pages. Difference from the previous version: A slightly better choice of parameters in Section

    Thin shell implies spectral gap up to polylog via a stochastic localization scheme

    Full text link
    We consider the isoperimetric inequality on the class of high-dimensional isotropic convex bodies. We establish quantitative connections between two well-known open problems related to this inequality, namely, the thin shell conjecture, and the conjecture by Kannan, Lovasz, and Simonovits, showing that the corresponding optimal bounds are equivalent up to logarithmic factors. In particular we prove that, up to logarithmic factors, the minimal possible ratio between surface area and volume is attained on ellipsoids. We also show that a positive answer to the thin shell conjecture would imply an optimal dependence on the dimension in a certain formulation of the Brunn-Minkowski inequality. Our results rely on the construction of a stochastic localization scheme for log-concave measures.Comment: 33 page

    Bounding the norm of a log-concave vector via thin-shell estimates

    Full text link
    Chaining techniques show that if X is an isotropic log-concave random vector in R^n and Gamma is a standard Gaussian vector then E |X| < C n^{1/4} E |Gamma| for any norm |*|, where C is a universal constant. Using a completely different argument we establish a similar inequality relying on the thin-shell constant sigma_n = sup ((var|X|^){1/2} ; X isotropic and log-concave on R^n). In particular, we show that if the thin-shell conjecture sigma_n = O(1) holds, then n^{1/4} can be replaced by log (n) in the inequality. As a consequence, we obtain certain bounds for the mean-width, the dual mean-width and the isotropic constant of an isotropic convex body. In particular, we give an alternative proof of the fact that a positive answer to the thin-shell conjecture implies a positive answer to the slicing problem, up to a logarithmic factor.Comment: preliminary version, 13 page

    On the equivalence of modes of convergence for log-concave measures

    Full text link
    An important theme in recent work in asymptotic geometric analysis is that many classical implications between different types of geometric or functional inequalities can be reversed in the presence of convexity assumptions. In this note, we explore the extent to which different notions of distance between probability measures are comparable for log-concave distributions. Our results imply that weak convergence of isotropic log-concave distributions is equivalent to convergence in total variation, and is further equivalent to convergence in relative entropy when the limit measure is Gaussian.Comment: v3: Minor tweak in exposition. To appear in GAFA seminar note

    Remarks on the Central Limit Theorem for Non-Convex Bodies

    Full text link
    In this note, we study possible extensions of the Central Limit Theorem for non-convex bodies. First, we prove a Berry-Esseen type theorem for a certain class of unconditional bodies that are not necessarily convex. Then, we consider a widely-known class of non-convex bodies, the so-called p-convex bodies, and construct a counter-example for this class

    Optimal Concentration of Information Content For Log-Concave Densities

    Full text link
    An elementary proof is provided of sharp bounds for the varentropy of random vectors with log-concave densities, as well as for deviations of the information content from its mean. These bounds significantly improve on the bounds obtained by Bobkov and Madiman ({\it Ann. Probab.}, 39(4):1528--1543, 2011).Comment: 15 pages. Changes in v2: Remark 2.5 (due to C. Saroglou) added with more general sufficient conditions for equality in Theorem 2.3. Also some minor corrections and added reference
    • …
    corecore