286 research outputs found
Mesoamerican Reef Spawning Aggregations Help Maintain Fish Population: A Review of Connectivity Research and Priorities for Science Management
The life history of most marine organisms includes an obligate period of pelagic larval dispersal. Migration to spawning areas and pelagic dispersal is often well beyond the home range of these organisms. Designing marine protected areas to include a broad range of taxa and their various dispersal patterns is an important and daunting challenge. This paper addresses the issue of connectivity for one set of species in a limited geographic area. We focus on transient spawning reef fish within the Mesoamerican Reef and their connectivity. We divide our scientific review into four sections as follows: (1) ecological characterization of transient multi-species reef fish spawning aggregations, (2) oceanographic and biophysical modeling approaches for understanding connectivity, and (3) validation of models with observations. We conclude that the science behind connectivity is advancing rapidly on many fronts, but there are still large gaps, and it is still largely impossible for managers to apply the results of these studies in specific cases. We further recognize that human and political connectivity may be as important for management as the science behind it. Managers, scientists, fishermen, and politicians can and should embrace connectivity as an important factor in regional fisheries and marine biodiversity management. The collaborative design and implementation of networks of marine reserves that include multi-species spawning aggregation sites, critical nursery habitat, and their connectivity, are likely to provide an important contribution to reversing the decline in fisheries throughout the Gulf of Mexico and Caribbean Region
Effects of external nutrient sources and extreme weather events on the nutrient budget of a Southern European coastal lagoon
The seasonal and annual nitrogen (N), phosphorus (P), and carbon (C) budgets of the mesotidal Ria Formosa lagoon, southern Portugal, were estimated to reveal the main inputs and outputs, the seasonal patterns, and how they may influence the ecological functioning of the system. The effects of extreme weather events such as long-lasting strong winds causing upwelling and strong rainfall were assessed. External nutrient inputs were quantified; ocean exchange was assessed in 24-h sampling campaigns, and final calculations were made using a hydrodynamic model of the lagoon. Rain and stream inputs were the main freshwater sources to the lagoon. However, wastewater treatment plant and groundwater discharges dominated nutrient input, together accounting for 98, 96, and 88 % of total C, N, and P input, respectively. Organic matter and nutrients were continuously exported to the ocean. This pattern was reversed following extreme events, such as strong winds in early summer that caused upwelling and after a period of heavy rainfall in late autumn. A principal component analysis (PCA) revealed that ammonium and organic N and C exchange were positively associated with temperature as opposed to pH and nitrate. These variables reflected mostly the benthic lagoon metabolism, whereas particulate P exchange was correlated to Chl a, indicating that this was more related to phytoplankton dynamics. The increase of stochastic events, as expected in climate change scenarios, may have strong effects on the ecological functioning of coastal lagoons, altering the C and nutrient budgets.Portuguese Science and Technology Foundation (FCT) [POCI/MAR/58427/2004, PPCDT/MAR/58427/2004]; Portuguese Science and Technology Foundation (FCT
Undular tidal bores: Effect of channel constriction and bridge piers
A tidal bore may occur in a macro-tidal estuary when the tidal range exceeds 4.5-6 m and the estuary bathymetry amplifies the tidal wave. Its upstream propagation induces a strong mixing of the estuarine waters. The propagation of undular tidal bores was investigated herein to study the effect of bridge piers on the bore propagation and characteristics. Both the tidal bore profile and the turbulence generated by the bore were recorded. The free-surface undulation profiles exhibited a quasi-periodic shape, and the potential energy of the undulations represented up to 30% of the potential energy of the tidal bore. The presence of the channel constriction had a major impact on the free-surface properties. The undular tidal bore lost nearly one third of its potential energy per surface area as it propagated through the channel constriction. The detailed instantaneous velocity measurements showed a marked effect of the tidal bore passage suggesting the upstream advection of energetic events and vorticity "clouds" behind the bore front in both channel configurations: prismatic and with constriction. The turbulence patches were linked to some secondary motions and the proposed mechanisms were consistent with some field observations in the Daly River tidal bore. The findings emphasise the strong mixing induced by the tidal bore processes, and the impact of bridge structures on the phenomenon. © 2010 Springer Science+Business Media B.V
The known unknowns of hydraulic engineering
Hydraulic engineers and researchers deal with scientific challenges involving turbulent flow motion and its interactions with the surroundings. Turbulent flows are characterised by unpredictable behaviour, and little systematic research has yet been conducted in natural systems. This paper discusses the implications of recent developments in affordable instrumentation previously characterised by intrinsic weaknesses that adversely affect the quality of the signal outputs. A challenging application is the unsteady turbulence field in tidal bores. The interactions between open channel flows and movable boundaries and atmosphere illustrate another aspect of our limited knowledge. Rapid siltation of reservoirs and air entrainment in turbulent free-surface flows are discussed. In both applications, hydraulic engineers require some broad-based expertise. In turn the education of future hydraulic engineers is of vital importance
Physical Modelling of the Flow Field in an Undular Tidal Bore
A tidal bore may form in a converging channel with a funnel shape when the tidal range exceeds 6-9 m. The advancing surge has a major impact on the estuarine ecosystem. Physical modelling of an undular bore has been conducted based upon a quasi-steady flow analogy. The experimental data highlight rapid flow redistributions between successive wave troughs and crests as well as large bottom shear stress variations. The results suggest a sediment transport process combining scour beneath wave troughs associated with upward matter dispersion between a trough and the following wave crest. The process is repeated at each trough and significant sediment transport takes place with deposition in upstream intertidal zones. The conceptual model is supported by field observations showing murky waters after the bore passage and long-lasting chaotic waves
Fortnightly changes in water transport direction across the mouth of a narrow estuary
This research investigates the dynamics of the axial
tidal flow and residual circulation at the lower Guadiana
Estuary, south Portugal, a narrow mesotidal estuary with low
freshwater inputs. Current data were collected near the deepest
part of the channel for 21 months and across the channel
during two (spring and neap) tidal cycles. Results indicate
that at the deep channel, depth-averaged currents are stronger
and longer during the ebb at spring and during the flood at
neap, resulting in opposite water transport directions at a
fortnightly time scale. The net water transport across the entire
channel is up-estuary at spring and down-estuary at neap, i.e.,
opposite to the one at the deep channel. At spring tide, when
the estuary is considered to be well mixed, the observed
pattern of circulation (outflow in the deep channel, inflow
over the shoals) results from the combination of the Stokes
transport and compensating return flow, which varies laterally
with the bathymetry. At neap tide (in particular for those of
lowest amplitude each month), inflows at the deep channel are
consistently associated with the development of gravitational
circulation. Comparisons with previous studies suggest that
the baroclinic pressure gradient (rather than internal tidal
asymmetries) is the main driver of the residual water transport.
Our observations also indicate that the flushing out of the
water accumulated up-estuary (at spring) may also produce
strong unidirectional barotropic outflow across the entire
channel around neap tide.info:eu-repo/semantics/publishedVersio
Environmental Impact of Undular Tidal Bores in Tropical Rivers
A tidal bore impacts significantly on the estuarine ecosystem, although little is known on the flow field, mixing and sediment motion beneath tidal bores. In the absence of detailed systematic field measurements, a quasi-steady flow analogy was applied to investigate undular tidal bores with inflow Froude numbers between 1.25 and 1.6. Experimental results indicated that rapid flow redistributions occur beneath the free-surface undulations, with significant variations in bed shear stress between wave crests and troughs. Dynamic similarity was used to predict detailed flow characteristics of undular tidal bores. The effects of periodic loading on river sediments, scour of river bed and flow mixing behind the bore are discussed. A better understanding of these processes will contribute to better management practices in tidal bore affected rivers, including the Styx and Daly rivers in tropical Australia
Benthic ecology of semi-natural coastal lagoons, in the Ria Formosa (Southern Portugal), Exposed to different water renewal regimes
Several studies in semi-natural coastal lagoons in the Ria Formosa lagoonal system have been carried out. These man-made water reservoirs behave as small lagoons with one opening to the tidal channels, which may be intermittent. Because of their size, these reservoirs are ideal sites for ecological studies. Water quality and macrobenthic fauna were analysed in five water reservoirs. All reservoirs received the same incoming water through a tidal channel, but they differed in water renewal regime. Multidimensional Scaling (MDS) and Discriminant Analysis were used to evaluate the similarity among sites, stations and sampling occasions. Different levels of taxonomic resolution (family, large taxonomic groups and phylum level) were also evaluated. The separation of sites and stations became unclear using high taxonomic levels. Results from the multivariate analyses suggest a slight differentiation of the stations according to sampling occasion but a clear differentiation of the several water reservoirs. Some of the lagoons studied with low water renewal rates showed strong environmental variations. They were characterised by low diversity indexes and abundance of small-sized organisms. Other lagoons, with high water renewal rates, showed low environmental variation and well diversified and structured benthic communities. The main environmental factor that seems to affect the benthic communities was the variation in salinity between neap and spring tides, which is related with the water renewal regime. Coastal lagoons offer a protected shallow habitat, which can be highly productive. Well structured communities, controlled by k-strategists, can develop and settle in leaky lagoons, that is, lagoons with wide entrance channels and tidal currents which guarantee a good water renewal. In these lagoons, biomass can accumulate in large organisms. In contrast, lagoons with a single narrow entrance, that may be closed for long periods, are characterised by persistent physical stress and are dominated by communities of small-sized r-strategists
Seagrass and submerged aquatic vegetation (VAS) habitats off the Coast of Brazil: state of knowledge, conservation and main threats
Seagrass meadows are among the most threatened ecosystems on earth, raising concerns about the equilibrium of coastal ecosystems and the sustainability of local fisheries. The present review evaluated the current status of the research on seagrasses and submerged aquatic vegetation (SAV) habitats off the coast of Brazil in terms of plant responses to environmental conditions, changes in distribution and abundance, and the possible role of climate change and variability. Despite an increase in the number of studies, the communication of the results is still relatively limited and is mainly addressed to a national or regional public; thus, South American seagrasses are rarely included or cited in global reviews and models. The scarcity of large-scale and long-term studies allowing the detection of changes in the structure, abundance and composition of seagrass habitats and associated species still hinders the investigation of such communities with respect to the potential effects of climate change. Seagrass meadows and SAV occur all along the Brazilian coast, with species distribution and abundance being strongly influenced by regional oceanography, coastal water masses, river runoff and coastal geomorphology. Based on these geomorphological, hydrological and ecological features, we characterised the distribution of seagrass habitats and abundances within the major coastal compartments. The current conservation status of Brazilian seagrasses and SAV is critical. The unsustainable exploitation and occupation of coastal areas and the multifold anthropogenic footprints left during the last 100 years led to the loss and degradation of shoreline habitats potentially suitable for seagrass occupation. Knowledge of the prevailing patterns and processes governing seagrass structure and functioning along the Brazilian coast is necessary for the global discussion on climate change. Our review is a first and much-needed step toward a more integrated and inclusive approach to understanding the diversity of coastal plant formations along the Southwestern Atlantic coast as well as a regional alert the projected or predicted effects of global changes on the goods and services provided by regional seagrasses and SAV
Trophic Relationships and Habitat Preferences of Delphinids from the Southeastern Brazilian Coast Determined by Carbon and Nitrogen Stable Isotope Composition
To investigate the foraging habitats of delphinids in southeastern Brazil, we analyzed stable carbon (δ13C) and nitrogen (δ15N) isotopes in muscle samples of the following 10 delphinid species: Sotalia guianensis, Stenella frontalis, Tursiops truncatus, Steno bredanensis, Pseudorca crassidens, Delphinus sp., Lagenodelphis hosei, Stenella attenuata, Stenella longirostris and Grampus griseus. We also compared the δ13C and δ15N values among four populations of S. guianensis. Variation in carbon isotope results from coast to ocean indicated that there was a significant decrease in δ13C values from estuarine dolphins to oceanic species. S. guianensis from Guanabara Bay had the highest mean δ13C value, while oceanic species showed significantly lower δ13C values. The highest δ15N values were observed for P. crassidens and T. truncatus, suggesting that these species occupy the highest trophic position among the delphinids studied here. The oceanic species S. attenuata, G. griseus and L. hosei had the lowest δ15N values. Stable isotope analysis showed that the three populations of S. guianensis in coastal bays had different δ13C values, but similar δ15N results. Guiana dolphins from Sepetiba and Ilha Grande bays had different foraging habitat, with specimens from Ilha Grande showing more negative δ13C values. This study provides further information on the feeding ecology of delphinids occurring in southeastern Brazil, with evidence of distinctive foraging habitats and the occupation of different ecological niches by these species in the study area.Peer reviewe
- …
