2,755 research outputs found

    The Globular Cluster System of the Coma cD Galaxy NGC 4874 from Hubble Space Telescope ACS and WFC3/IR Imaging

    Get PDF
    We present new HST optical and near-infrared (NIR) photometry of the rich globular cluster (GC) system of NGC 4874, the cD galaxy in the core of the Coma cluster (Abell 1656). NGC 4874 was observed with the HST Advanced Camera for Surveys in the F475W (g) and F814W (I) passbands and the Wide Field Camera 3 IR Channel in F160W (H). The GCs in this field exhibit a bimodal optical color distribution with more than half of the GCs falling on the red side at g-I > 1. Bimodality is also present, though less conspicuously, in the optical-NIR I-H color. Consistent with past work, we find evidence for nonlinearity in the g-I versus I-H color-color relation. Our results thus underscore the need for understanding the detailed form of the color-metallicity relations in interpreting observational data on GC bimodality. We also find a very strong color-magnitude trend, or "blue tilt," for the blue component of the optical color distribution of the NGC 4874 GC system. A similarly strong trend is present for the overall mean I-H color as a function of magnitude; for M_814 < -10 mag, these trends imply a steep mass-metallicity scaling with ZMGC1.4±0.4Z\propto M_{\rm GC}^{1.4\pm0.4}, but the scaling is not a simple power law and becomes much weaker at lower masses. As in other similar systems, the spatial distribution of the blue GCs is more extended than that of the red GCs, partly because of blue GCs associated with surrounding cluster galaxies. In addition, the center of the GC system is displaced by 4+/-1 kpc towards the southwest from the luminosity center of NGC 4874, in the direction of NGC 4872. Finally, we remark on a dwarf elliptical galaxy with a noticeably asymmetrical GC distribution. Interestingly, this dwarf has a velocity of nearly -3000 km/s with respect to NGC 4874; we suggest it is on its first infall into the cluster core and is undergoing stripping of its GC system by the cluster potential.Comment: 24 pages, 20 figures, accepted for publication in Ap

    Scaling Relations and Overabundance of Massive Clusters at z>~1 from Weak-Lensing Studies with HST

    Get PDF
    We present weak gravitational lensing analysis of 22 high-redshift (z >~1) clusters based on Hubble Space Telescope images. Most clusters in our sample provide significant lensing signals and are well detected in their reconstructed two-dimensional mass maps. Combining the current results and our previous weak-lensing studies of five other high-z clusters, we compare gravitational lensing masses of these clusters with other observables. We revisit the question whether the presence of the most massive clusters in our sample is in tension with the current LambdaCDM structure formation paradigm. We find that the lensing masses are tightly correlated with the gas temperatures and establish, for the first time, the lensing mass-temperature relation at z >~ 1. For the power law slope of the M-TX relation (M propto T^{\alpha}), we obtain \alpha=1.54 +/- 0.23. This is consistent with the theoretical self-similar prediction \alpha=3/2 and with the results previously reported in the literature for much lower redshift samples. However, our normalization is lower than the previous results by 20-30%, indicating that the normalization in the M-TX relation might evolve. After correcting for Eddington bias and updating the discovery area with a more conservative choice, we find that the existence of the most massive clusters in our sample still provides a tension with the current Lambda CDM model. The combined probability of finding the four most massive clusters in this sample after marginalization over current cosmological parameters is less than 1%.Comment: ApJ in press. See http://www.supernova.lbl.gov for additional information pertaining to the HST Cluster SN Surve

    Morphology with Light Profile Fitting of Confirmed Cluster Galaxies at z=0.84

    Full text link
    We perform a morphological study of 124 spectroscopically confirmed cluster galaxies in the z=0.84 galaxy cluster RX J0152.7-1357. Our classification scheme includes color information, visual morphology, and 1-component and 2-component light profile fitting derived from Hubble Space Telescope riz imaging. We adopt a modified version of a detailed classification scheme previously used in studies of field galaxies and found to be correlated with kinematic features of those galaxies. We compare our cluster galaxy morphologies to those of field galaxies at similar redshift. We also compare galaxy morphologies in regions of the cluster with different dark-matter density as determined by weak-lensing maps. We find an early-type fraction for the cluster population as a whole of 47%, about 2.8 times higher than the field, and similar to the dynamically young cluster MS 1054 at similar redshift. We find the most drastic change in morphology distribution between the low and intermediate dark matter density regions within the cluster, with the early type fraction doubling and the peculiar fraction dropping by nearly half. The peculiar fraction drops more drastically than the spiral fraction going from the outskirts to the intermediate-density regions. This suggests that many galaxies falling into clusters at z~0.8 may evolve directly from peculiar, merging, and compact systems into early-type galaxies, without having the chance to first evolve into a regular spiral galaxy.Comment: 13 pages, 11 figures, accepted for publication in A&

    Galaxy-Mass Correlations on 10 Mpc Scales in the Deep Lens Survey

    Full text link
    We examine the projected correlation of galaxies with mass from small scales (<few hundred kpc) where individual dark matter halos dominate, out to 15 Mpc where correlated large-scale structure dominates. We investigate these profiles as a function of galaxy luminosity and redshift. Selecting 0.8 million galaxies in the Deep Lens Survey, we use photometric redshifts and stacked weak gravitational lensing shear tomography out to radial scales of 1 degree from the centers of foreground galaxies. We detect correlated mass density from multiple halos and large-scale structure at radii larger than the virial radius, and find the first observational evidence for growth in the galaxy-mass correlation on 10 Mpc scales with decreasing redshift and fixed range of luminosity. For a fixed range of redshift, we find a scaling of projected halo mass with rest-frame luminosity similar to previous studies at lower redshift. We control systematic errors in shape measurement and photometric redshift, enforce volume completeness through absolute magnitude cuts, and explore residual sample selection effects via simulations.Comment: 13 pages, 9 figures, re-submitted to ApJ after addressing referee comment

    Towards Precision LSST Weak-Lensing Measurement - I: Impacts of Atmospheric Turbulence and Optical Aberration

    Full text link
    The weak-lensing science of the LSST project drives the need to carefully model and separate the instrumental artifacts from the intrinsic lensing signal. The dominant source of the systematics for all ground based telescopes is the spatial correlation of the PSF modulated by both atmospheric turbulence and optical aberrations. In this paper, we present a full FOV simulation of the LSST images by modeling both the atmosphere and the telescope optics with the most current data for the telescope specifications and the environment. To simulate the effects of atmospheric turbulence, we generated six-layer phase screens with the parameters estimated from the on-site measurements. For the optics, we combined the ray-tracing tool ZEMAX and our simulated focal plane data to introduce realistic aberrations and focal plane height fluctuations. Although this expected flatness deviation for LSST is small compared with that of other existing cameras, the fast f-ratio of the LSST optics makes this focal plane flatness variation and the resulting PSF discontinuities across the CCD boundaries significant challenges in our removal of the systematics. We resolve this complication by performing PCA CCD-by-CCD, and interpolating the basis functions using conventional polynomials. We demonstrate that this PSF correction scheme reduces the residual PSF ellipticity correlation below 10^-7 over the cosmologically interesting scale. From a null test using HST/UDF galaxy images without input shear, we verify that the amplitude of the galaxy ellipticity correlation function, after the PSF correction, is consistent with the shot noise set by the finite number of objects. Therefore, we conclude that the current optical design and specification for the accuracy in the focal plane assembly are sufficient to enable the control of the PSF systematics required for weak-lensing science with the LSST.Comment: Accepted to PASP. High-resolution version is available at http://dls.physics.ucdavis.edu/~mkjee/LSST_weak_lensing_simulation.pd

    Phenomenological covariant approach to gravity

    Full text link
    We covariantly modify the Einstein-Hilbert action such that the modified action perturbatively resolves the flat rotational velocity curve of the spiral galaxies and gives rise to the Tully-Fisher relation, and dynamically generates the cosmological constant. This modification requires introducing just a single new universal parameter.Comment: v6: a mistake in deriving the equation of the cosmological constant corrected, refs adde

    Early-type Galaxies at z ~ 1.3. II. Masses and Ages of Early-type Galaxies in Different Environments and Their Dependence on Stellar Population Model Assumptions

    Get PDF
    We have derived masses and ages for 79 early-type galaxies (ETGs) in different environments at z ~ 1.3 in the Lynx supercluster and in the GOODS/CDF-S field using multi-wavelength (0.6-4.5 μm; KPNO, Palomar, Keck, Hubble Space Telescope, Spitzer) data sets. At this redshift the contribution of the thermally pulsing asymptotic giant branch (TP-AGB) phase is important for ETGs, and the mass and age estimates depend on the choice of the stellar population model used in the spectral energy distribution fits. We describe in detail the differences among model predictions for a large range of galaxy ages, showing the dependence of these differences on age. Current models still yield large uncertainties. While recent models from Maraston and Charlot & Bruzual offer better modeling of the TP-AGB phase with respect to less recent Bruzual & Charlot models, their predictions do not often match. The modeling of this TP-AGB phase has a significant impact on the derived parameters for galaxies observed at high redshift. Some of our results do not depend on the choice of the model: for all models, the most massive galaxies are the oldest ones, independent of the environment. When using the Maraston and Charlot & Bruzual models, the mass distribution is similar in the clusters and in the groups, whereas in our field sample there is a deficit of massive (M ≳ 10^(11) M_☉) ETGs. According to those last models, ETGs belonging to the cluster environment host on average older stars with respect to group and field populations. This difference is less significant than the age difference in galaxies of different masses

    Star-forming fractions and galaxy evolution with redshift in rich X-ray-selected galaxy clusters

    Get PDF
    We have compared stacked spectra of galaxies, grouped by environment and stellar mass, among 58 members of the redshift z = 1.24 galaxy cluster RDCS J1252.9-2927 (J1252.9) and 134 galaxies in the z = 0.84 cluster RX J0152.7-1357 (J0152.7). These two clusters are excellent laboratories to study how galaxies evolve from star-forming to passive at z ~ 1. We measured spectral indices and star-forming fractions for our density- and mass-based stacked spectra. The star-forming fraction among low-mass galaxies (<7 × 10^(10)M_⊙) is higher in J1252.9 than in J0152.7, at about 4σ significance. Thus star formation is being quenched between z = 1.24 and z = 0.84 for a substantial fraction of low-mass galaxies. Star-forming fractions were also found to be higher in J1252.9 in all environments, including the core. Passive galaxies in J1252.9 have systematically lower D_n4000 values than in J0152.7 in all density and mass groups, consistent with passive evolution at modestly super-solar metallicities

    Association of Expired Nitric Oxide with Occupational Particulate Exposure

    Get PDF
    Particulate air pollution has been associated with adverse respiratory health effects. This study assessed the utility of expired nitric oxide to detect acute airway responses to metal-containing fine particulates. Using a repeated-measures study design, we investigated the association between the fractional concentration of expired nitric oxide (FE_ENO) and exposure to particulate matter with an aerodynamic mass median diameter of less than or equal to 2.5 micro m (PM2.5_{2.5}) in boilermakers exposed to residual oil fly ash and metal fumes. Subjects were monitored for 5 days during boiler repair overhauls in 1999 (n = 20) or 2000 (n = 14). The Wilcoxon median baseline FE_ENO was 10.6 ppb [95% confidence interval (CI): 9.1, 12.7] in 1999 and 7.4 ppb (95% CI: 6.7, 8.0) in 2000. The Wilcoxon median PM2.5_{2.5} 8-hr time-weighted average was 0.56 mg/m(3) (95% CI: 0.37, 0.93) in 1999 and 0.86 mg/m(3) (95% CI: 0.65, 1.07) in 2000. FE_ENO levels during the work week were significantly lower than baseline FE_ENO in 1999 (p < 0.001). A significant inverse exposure-response relationship between log-transformed FE_ENO and the previous workday's PM2.5_{2.5} concentration was found in 1999, after adjusting for smoking status, age, and sampling year. With each 1 mg/m3^3 incremental increase in PM2.5_{2.5} exposure, log FE_ENO decreased by 0.24 (95% CI: -0.38, -0.10) in 1999. The lack of an exposure-response relationship between PM2.5_{2.5} exposure and FE_ENO in 2000 could be attributable to exposure misclassification resulting from the use of respirators. In conclusion, occupational exposure to metal-containing fine particulates was associated with significant decreases in FE_ENO in a survey of workers with limited respirator usage

    Clusters at Half Hubble Time: Galaxy Structure and Colors in RXJ0152.7-1357 and MS1054-03

    Full text link
    We study the photometric and structural properties of spectroscopically confirmed members in the two massive X-ray--selected z=0.83 galaxy clusters MS1054-03 and RXJ0152-1357 using three-band mosaic imaging with the Hubble Space Telescope Advanced Camera for Surveys. The samples include 105 and 140 members of MS1054-03 and RXJ0152-1357, respectively, with ACS F775W magnitude < 24.0. We develop a promising new structural classification method, based on a combination of the best-fit Sersic indices and the normalized root-mean-square residuals from the fits; the resulting classes agree well with the visual ones, but are less affected by galaxy orientation. We examine the color--magnitude relations in detail and find that the color residuals correlate with the local mass density measured from our weak lensing maps; we identify a threshold density of Σ0.1\Sigma \approx 0.1, in units of the critical density, above which the star formation appears to cease. For RXJ0152-1357, we also find a trend in the color residuals with velocity, resulting from an offset of about 980 km/s in the mean redshifts of the early- and late-type galaxies. Analysis of the color--color diagrams indicates that a range of star formation time-scales are needed to reproduce the loci of the galaxy colors. We also identify some cluster galaxies whose colors can only be explained by large amounts, AV1A_V \approx 1 mag, of internal dust extinction. [Abstract shortened]Comment: 30 pages, emulateapj format; 23 figures, many in color. Accepted by ApJ; scheduled for the 10 June 2006 issue. Some figures degraded; for a higher resolution version, see: http://astro.wsu.edu/blakeslee/z1clusters
    corecore