249 research outputs found
Velocity weakening and possibility of aftershocks in nanofriction experiments
We study the frictional behavior of small contacts as those realized in the
atomic force microscope and other experimental setups, in the framework of
generalized Prandtl-Tomlinson models. Particular attention is paid to
mechanisms that generate velocity weakening, namely a decreasing average
friction force with the relative sliding velocity.The mechanisms studied model
the possibility of viscous relaxation, or aging effects in the contact. It is
found that, in addition to producing velocity weakening, these mechanisms can
also produce aftershocks at sufficiently low sliding velocities. This provides
a remarkable analogy at the microscale, of friction properties at the
macroscale, where aftershocks and velocity weakening are two fundamental
features of seismic phenomena.Comment: 8 pages, 7 figure
Liquid-liquid equilibrium for monodisperse spherical particles
A system of identical particles interacting through an isotropic potential
that allows for two preferred interparticle distances is numerically studied.
When the parameters of the interaction potential are adequately chosen, the
system exhibits coexistence between two different liquid phases (in addition to
the usual liquid-gas coexistence). It is shown that this coexistence can occur
at equilibrium, namely, in the region where the liquid is thermodynamically
stable.Comment: 6 pages, 8 figures. Published versio
Some exact results for the velocity of cracks propagating in non-linear elastic models
We analyze a piece-wise linear elastic model for the propagation of a crack
in a stripe geometry under mode III conditions, in the absence of dissipation.
The model is continuous in the propagation direction and discrete in the
perpendicular direction. The velocity of the crack is a function of the value
of the applied strain. We find analytically the value of the propagation
velocity close to the Griffith threshold, and close to the strain of uniform
breakdown. Contrary to the case of perfectly harmonic behavior up to the
fracture point, in the piece-wise linear elastic model the crack velocity is
lower than the sound velocity, reaching this limiting value at the strain of
uniform breakdown. We complement the analytical results with numerical
simulations and find excellent agreement.Comment: 9 pages, 13 figure
Boundary lubrication properties of materials with expansive freezing
We have performed molecular dynamics simulations of solid-solid contacts
lubricated by a model fluid displaying many of the properties of water,
particularly its expansive freezing. Near the region where expansive freezing
occurs, the lubricating film remains fluid, and the friction force decreases
linearly as the shear velocity is reduced. No sign of stick-slip motion is
observed even at the lowest velocities. We give a simple interpretation of
these results, and suggest that in general good boundary lubrication properties
will be found in the family of materials with expansive freezing.Comment: Version to appear in Phys. Rev. Let
Supersonic crack propagation in a class of lattice models of Mode III brittle fracture
We study a lattice model for mode III crack propagation in brittle materials
in a stripe geometry at constant applied stretching. Stiffening of the material
at large deformation produces supersonic crack propagation. For large
stretching the propagation is guided by well developed soliton waves. For low
stretching, the crack-tip velocity has a universal dependence on stretching
that can be obtained using a simple geometrical argument.Comment: 4 pages, 3 figure
The phase diagram of high-Tc's: Influence of anisotropy and disorder
We propose a phase diagram for the vortex structure of high temperature
superconductors which incorporates the effects of anisotropy and disorder. It
is based on numerical simulations using the three-dimensional Josephson
junction array model. We support the results with an estimation of the internal
energy and configurational entropy of the system. Our results give a unified
picture of the behavior of the vortex lattice, covering from the very
anysotropic BiSrCaCuO to the less anisotropic YBaCuO, and from the first order
melting ocurring in clean samples to the continuous transitions observed in
samples with defects.Comment: 8 pages with 7 figure
Longitudinal and transverse dissipation in a simple model for the vortex lattice with screening
Transport properties of the vortex lattice in high temperature
superconductors are studied using numerical simulations in the case in which
the non-local interactions between vortex lines are dismissed. The results
obtained for the longitudinal and transverse resistivities in the presence of
quenched disorder are compared with the results of experimental measurements
and other numerical simulations where the full interaction is considered. This
work shows that the dependence on temperature of the resistivities is well
described by the model without interactions, thus indicating that many of the
transport characteristics of the vortex structure in real materials are mainly
a consequence of the topological configuration of the vortex structure only. In
addition, for highly anisotropic samples, a regime is obtained where
longitudinal coherence is lost at temperatures where transverse coherence is
still finite. I discuss the possibility of observing this regime in real
samples.Comment: 9 pages, 7 figures included using epsf.st
Effect of water-wall interaction potential on the properties of nanoconfined water
Much of the understanding of bulk liquids has progressed through study of the
limiting case in which molecules interact via purely repulsive forces, such as
a hard-core potential. In the same spirit, we report progress on the
understanding of confined water by examining the behavior of water-like
molecules interacting with planar walls via purely repulsive forces and compare
our results with those obtained for Lennard-Jones (LJ) interactions between the
molecules and the walls. Specifically, we perform molecular dynamics
simulations of 512 water-like molecules which are confined between two smooth
planar walls that are separated by 1.1 nm. At this separation, there are either
two or three molecular layers of water, depending on density. We study two
different forms of repulsive confinements, when the interaction potential
between water-wall is (i) and (ii) WCA-like repulsive potential. We
find that the thermodynamic, dynamic and structural properties of the liquid in
purely repulsive confinements qualitatively match those for a system with a
pure LJ attraction to the wall. In previous studies that include attractions,
freezing into monolayer or trilayer ice was seen for this wall separation.
Using the same separation as these previous studies, we find that the crystal
state is not stable with repulsive walls but is stable with WCA-like
repulsive confinement. However, by carefully adjusting the separation of the
plates with repulsive interactions so that the effective space
available to the molecules is the same as that for LJ confinement, we find that
the same crystal phases are stable. This result emphasizes the importance of
comparing systems only using the same effective confinement, which may differ
from the geometric separation of the confining surfaces.Comment: 20 pages, 10 figure
Towards a modeling of the time dependence of contact area between solid bodies
I present a simple model of the time dependence of the contact area between
solid bodies, assuming either a totally uncorrelated surface topography, or a
self affine surface roughness. The existence of relaxation effects (that I
incorporate using a recently proposed model) produces the time increase of the
contact area towards an asymptotic value that can be much smaller than
the nominal contact area. For an uncorrelated surface topography, the time
evolution of is numerically found to be well fitted by expressions of
the form [, where the exponent depends on
the normal load as , with close to 0.5. In
particular, when the contact area is much lower than the nominal area I obtain
, i.e., a logarithmic time increase of the
contact area, in accordance with experimental observations. The logarithmic
increase for low loads is also obtained analytically in this case. For the more
realistic case of self affine surfaces, the results are qualitatively similar.Comment: 18 pages, 9 figure
Disorder-induced microscopic magnetic memory
Using coherent x-ray speckle metrology, we have measured the influence of
disorder on major loop return point memory (RPM) and complementary point memory
(CPM) for a series of perpendicular anisotropy Co/Pt multilayer films. In the
low disorder limit, the domain structures show no memory with field cycling--no
RPM and no CPM. With increasing disorder, we observe the onset and the
saturation of both the RPM and the CPM. These results provide the first direct
ensemble-sensitive experimental study of the effects of varying disorder on
microscopic magnetic memory and are compared against the predictions of
existing theories.Comment: 4 pages, 4 figures. Accepted for publication in Physical Review
Letters in Nov. 200
- …
