195 research outputs found

    Sequential and Spontaneous Star Formation Around the Mid-Infrared Halo HII Region KR 140

    Full text link
    We use 2MASS and MSX infrared observations, along with new molecular line (CO) observations, to examine the distribution of young stellar objects (YSOs) in the molecular cloud surrounding the halo HII region KR 140 in order to determine if the ongoing star-formation activity in this region is dominated by sequential star formation within the photodissociation region (PDR) surrounding the HII region. We find that KR 140 has an extensive population of YSOs that have spontaneously formed due to processes not related to the expansion of the HII region. Much of the YSO population in the molecular cloud is concentrated along a dense filamentary molecular structure, traced by C18O, that has not been erased by the formation of the exciting O star. Some of the previously observed submillimetre clumps surrounding the HII region are shown to be sites of recent intermediate and low-mass star formation while other massive starless clumps clearly associated with the PDR may be the next sites of sequential star formation.Comment: Accepted for publication in MNRAS, 8 pages, 10 figure

    Dust Dynamics in Compressible MHD Turbulence

    Full text link
    We calculate the relative grain-grain motions arising from interstellar magnetohydrodynamic (MHD) turbulence. The MHD turbulence includes both fluid motions and magnetic fluctuations. While the fluid motions accelerate grains through hydro-drag, the electromagnetic fluctuations accelerate grains through resonant interactions. We consider both incompressive (Alfv\'{e}n) and compressive (fast and slow) MHD modes and use descriptions of MHD turbulence obtained in Cho & Lazarian (2002). Calculations of grain relative motion are made for realistic grain charging and interstellar turbulence that is consistent with the velocity dispersions observed in diffuse gas, including cutoff of the turbulence from various damping processes. We show that fast modes dominate grain acceleration, and can drive grains to supersonic velocities. Grains are also scattered by gyroresonance interactions, but the scattering is less important than acceleration for grains moving with sub-Alfv\'{e}nic velocities. Since the grains are preferentially accelerated with large pitch angles, the supersonic grains will be aligned with long axes perpendicular to the magnetic field. We compare grain velocities arising from MHD turbulence with those arising from photoelectric emission, radiation pressure and H2_{2} thrust. We show that for typical interstellar conditions turbulence should prevent these mechanisms from segregating small and large grains. Finally, gyroresonant acceleration is bound to preaccelerate grains that are further accelerated in shocks. Grain-grain collisions in the shock may then contribute to the overabundance of refractory elements in the composition of galactic cosmic rays.Comment: 15 pages, 17 figure

    Chemistry and Dynamics in Pre-Protostellar Cores

    Full text link
    We have compared molecular line emission to dust continuum emission and modeled molecular lines using Monte Carlo simulations in order to study the depletion of molecules and the ionization fraction in three preprotostellar cores, L1512, L1544, and L1689B. L1512 is much less dense than L1544 and L1689B, which have similar density structures. L1689B has a different environment from those of L1512 and L1544. We used density and temperature profiles, calculated by modeling dust continuum emission in the submillimeter, for modeling molecular line profiles. In addition, we have used molecular line profiles and maps observed in several different molecules toward the three cores. We find a considerable diversity in chemical state among the three cores. The molecules include those sensitive to different timescales of chemical evolution such as CCS, the isotopes of CO and HCO+, DCO+, and N2H+. The CO molecule is significantly depleted in L1512 and L1544, but not in L1689B. CCS may be in the second enhancement of its abundance in L1512 and L1544 because of the significant depletion of CO molecules. N2H+ might already start to be depleted in L1512, but it traces very well the distribution of dust emission in L1544. On the other hand, L1689B may be so young that N2H+ has not reached its maximum yet. The ionization fraction has been calculated using H13CO+ and DCO+. This study suggests that chemical evolution depends on the absolute timescale during which a core stays in a given environment as well as its density structure.Comment: 33 pages, 12 figures, accepted to Ap

    Density of states in random lattices with translational invariance

    Full text link
    We propose a random matrix approach to describe vibrational excitations in disordered systems. The dynamical matrix M is taken in the form M=AA^T where A is some real (not generally symmetric) random matrix. It guaranties that M is a positive definite matrix which is necessary for mechanical stability of the system. We built matrix A on a simple cubic lattice with translational invariance and interaction between nearest neighbors. We found that for certain type of disorder phonons cannot propagate through the lattice and the density of states g(w) is a constant at small w. The reason is a breakdown of affine assumptions and inapplicability of the elasticity theory. Young modulus goes to zero in the thermodynamic limit. It strongly reminds of the properties of a granular matter at the jamming transition point. Most of the vibrations are delocalized and similar to diffusons introduced by Allen, Feldman et al., Phil. Mag. B v.79, 1715 (1999).Comment: 4 pages, 5 figure

    On the Influence of Uncertainties in Chemical Reaction Rates on Results of the Astrochemical Modelling

    Full text link
    With the chemical reaction rate database UMIST95 (Millar et al. 1997) we analyze how uncertainties in rate constants of gas-phase chemical reactions influence the modelling of molecular abundances in the interstellar medium. Random variations are introduced into the rate constants to estimate the scatter in theoretical abundances. Calculations are performed for dark and translucent molecular clouds where gas phase chemistry is adequate. Similar approach was used by Pineau des Forets & Roueff (2000) for the study of chemical bistability. All the species are divided into 6 sensitivity groups according to the value of the scatter in their model abundances computed with varied rate constants. It is shown that the distribution of species within these groups depends on the number of atoms in a molecule and on the adopted physical conditions. The simple method is suggested which allows to single out reactions that are most important for the evolution of a given species.Comment: 4 pages. To appear in the proceedings of the 4th Cologne-Bonn Zermatt Symposiu

    Observations of chemical differentiation in clumpy molecular clouds

    Full text link
    We have extensively mapped a sample of dense molecular clouds (L1512, TMC-1C, L1262, Per 7, L1389, L1251E) in lines of HC3N, CH3OH, SO and C^{18}O. We demonstrate that a high degree of chemical differentiation is present in all of the observed clouds. We analyse the molecular maps for each cloud, demonstrating a systematic chemical differentiation across the sample, which we relate to the evolutionary state of the cloud. We relate our observations to the cloud physical, kinematical and evolutionary properties, and also compare them to the predictions of simple chemical models. The implications of this work for understanding the origin of the clumpy structures and chemical differentiation observed in dense clouds are discussed.Comment: 20 pages, 7 figures. Higher quality figures appear in the published journal articl

    Physical Origin of the Boson Peak Deduced from a Two-Order-Parameter Model of Liquid

    Full text link
    We propose that the boson peak originates from the (quasi-) localized vibrational modes associated with long-lived locally favored structures, which are intrinsic to a liquid state and are randomly distributed in a sea of normal-liquid structures. This tells us that the number density of locally favored structures is an important physical factor determining the intensity of the boson peak. In our two-order-parameter model of the liquid-glass transition, the locally favored structures act as impurities disturbing crystallization and thus lead to vitrification. This naturally explains the dependence of the intensity of the boson peak on temperature, pressure, and fragility, and also the close correlation between the boson peak and the first sharp diffraction peak (or prepeak).Comment: 5 pages, 1 figure, An error in the reference (Ref. 7) was correcte

    The SAGE-Spec Spitzer Legacy program: the life-cycle of dust and gas in the Large Magellanic Cloud. Point source classification – III

    Get PDF
    The Infrared Spectrograph (IRS) on the Spitzer Space Telescope observed nearly 800 point sources in the Large Magellanic Cloud (LMC), taking over 1000 spectra. 197 of these targets were observed as part of the SAGE-Spec Spitzer Legacy program; the remainder are from a variety of different calibration, guaranteed time and open time projects. We classify these point sources into types according to their infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information, using a decision-tree classification method. We then refine the classification using supplementary information from the astrophysical literature. We find that our IRS sample is comprised substantially of YSO and H ii regions, post-main-sequence low-mass stars: (post-)asymptotic giant branch stars and planetary nebulae and massive stars including several rare evolutionary types. Two supernova remnants, a nova and several background galaxies were also observed. We use these classifications to improve our understanding of the stellar populations in the LMC, study the composition and characteristics of dust species in a variety of LMC objects, and to verify the photometric classification methods used by mid-IR surveys. We discover that some widely used catalogues of objects contain considerable contamination and others are missing sources in our sample

    Spitzer infrared spectrograph point source classification in the Small Magellanic Cloud

    Get PDF
    The Magellanic Clouds are uniquely placed to study the stellar contribution to dust emission. Individual stars can be resolved in these systems even in the mid-infrared, and they are close enough to allow detection of infrared excess caused by dust. We have searched the Spitzer Space Telescope data archive for all Infrared Spectrograph (IRS) staring-mode observations of the Small Magellanic Cloud (SMC) and found that 209 Infrared Array Camera (IRAC) point sources within the footprint of the Surveying the Agents of Galaxy Evolution in the Small Magellanic Cloud (SAGE-SMC) Spitzer Legacy programme were targeted, within a total of 311 staring-mode observations. We classify these point sources using a decision tree method of object classification, based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information. We find 58 asymptotic giant branch (AGB) stars, 51 young stellar objects, 4 post-AGB objects, 22 red supergiants, 27 stars (of which 23 are dusty OB stars), 24 planetary nebulae (PNe), 10 Wolf–Rayet stars, 3 H II regions, 3 R Coronae Borealis stars, 1 Blue Supergiant and 6 other objects, including 2 foreground AGB stars. We use these classifications to evaluate the success of photometric classification methods reported in the literature
    • 

    corecore