1,495 research outputs found
The optical counterpart of SAX J1808.4-3658, the transient bursting millisecond X-ray pulsar
A set of CCD images have been obtained during the decline of the X-ray
transient SAX J1808.4-3658 during April-June 1998. The optical counterpart has
been confirmed by several pieces of evidence. The optical flux shows a
modulation on several nights which is consistent with the established X-ray
binary orbit period of 2 hours. This optical variability is roughly in
antiphase with the weak X-ray modulation. The source mean magnitude of V=16.7
on April 18 declined rapidly after April 22. From May 2 onwards the magnitude
was more constant at around V=18.45 but by June 27 was below our sensitivity
limit. The optical decline precedes the rapid second phase of the X-ray
decrease by 3 +/- 1 days. The source has been identified on a 1974 UK Schmidt
plate at an estimated magnitude of ~20. The nature of the optical companion is
discussed.Comment: 5 pages, 3 figures; published in MNRAS, March 15th 199
A GPU based real-time software correlation system for the Murchison Widefield Array prototype
Modern graphics processing units (GPUs) are inexpensive commodity hardware
that offer Tflop/s theoretical computing capacity. GPUs are well suited to many
compute-intensive tasks including digital signal processing.
We describe the implementation and performance of a GPU-based digital
correlator for radio astronomy. The correlator is implemented using the NVIDIA
CUDA development environment. We evaluate three design options on two
generations of NVIDIA hardware. The different designs utilize the internal
registers, shared memory and multiprocessors in different ways. We find that
optimal performance is achieved with the design that minimizes global memory
reads on recent generations of hardware.
The GPU-based correlator outperforms a single-threaded CPU equivalent by a
factor of 60 for a 32 antenna array, and runs on commodity PC hardware. The
extra compute capability provided by the GPU maximises the correlation
capability of a PC while retaining the fast development time associated with
using standard hardware, networking and programming languages. In this way, a
GPU-based correlation system represents a middle ground in design space between
high performance, custom built hardware and pure CPU-based software
correlation.
The correlator was deployed at the Murchison Widefield Array 32 antenna
prototype system where it ran in real-time for extended periods. We briefly
describe the data capture, streaming and correlation system for the prototype
array.Comment: 11 pages, to appear in PAS
Accretion column eclipses in the X-ray pulsars GX 1+4 and RX J0812.4-3114
Sharp dips observed in the pulse profiles of three X-ray pulsars (GX 1+4, RX
J0812.4-3114 and A 0535+26) have previously been suggested to arise from
partial eclipses of the emission region by the accretion column occurring once
each rotation period. We present pulse-phase spectroscopy from Rossi X-ray
Timing Explorer satellite observations of GX 1+4 and RX J0812.4-3114 which for
the first time confirms this interpretation. The dip phase corresponds to the
closest approach of the column axis to the line of sight, and the additional
optical depth for photons escaping from the column in this direction gives rise
to both the decrease in flux and increase in the fitted optical depth measured
at this phase. Analysis of the arrival time of individual dips in GX~1+4
provides the first measurement of azimuthal wandering of a neutron star
accretion column. The column longitude varies stochastically with standard
deviation 2-6 degrees depending on the source luminosity. Measurements of the
phase width of the dip both from mean pulse profiles and individual eclipses
demonstrates that the dip width is proportional to the flux. The variation is
consistent with that expected if the azimuthal extent of the accretion column
depends only upon the Keplerian velocity at the inner disc radius, which varies
as a consequence of the accretion rate Mdot.Comment: 7 pages, 5 figures, accepted by MNRAS. Included reference
VLBI Imaging of Water Maser Emission from the Nuclear Torus of NGC 1068
We have made the first VLBI synthesis images of the H2O maser emission
associated with the central engine of the Seyfert galaxy NGC 1068. Emission
extends about +/-300 km/s from the systemic velocity. Images with
submilliarcsecond angular resolution show that the red-shifted emission lies
along an arc to the northwest of the systemic emission. (The blue-shifted
emission has not yet been imaged with VLBI.) Based on the maser velocities and
the relative orientation of the known radio jet, we propose that the maser
emission arises on the surface of a nearly edge-on torus, where physical
conditions are conducive to maser action. The visible part of the torus is
axially thick, with comparable height and radius. The velocity field indicates
sub-Keplerian differential rotation around a central mass of about 1e7 Msun
that lies within a cylindrical radius of about 0.65 pc. The estimated
luminosity of the central engine is about 0.5 of the Eddington limit. There is
no detectable compact radio continuum emission near the proposed center of the
torus (T_B< 5e6 K on size scales of about 0.1 pc), so that the observed
flat-spectrum core cannot be direct self-absorbed synchrotron radiation.Comment: 12 pages, 4 figures. To appear in ApJ Part 2. Also available at
http://www.physics.ucsb.edu/~vlbiweb
Direction-Dependent Polarised Primary Beams in Wide-Field Synthesis Imaging
The process of wide-field synthesis imaging is explored, with the aim of
understanding the implications of variable, polarised primary beams for
forthcoming Epoch of Reionisation experiments. These experiments seek to detect
weak signatures from redshifted 21cm emission in deep residual datasets, after
suppression and subtraction of foreground emission. Many subtraction algorithms
benefit from low side-lobes and polarisation leakage at the outset, and both of
these are intimately linked to how the polarised primary beams are handled.
Building on previous contributions from a number of authors, in which
direction-dependent corrections are incorporated into visibility gridding
kernels, we consider the special characteristics of arrays of fixed dipole
antennas operating around 100-200 MHz, looking towards instruments such as the
Square Kilometre Array (SKA) and the Hydrogen Epoch of Reionization Arrays
(HERA). We show that integrating snapshots in the image domain can help to
produce compact gridding kernels, and also reduce the need to make complicated
polarised leakage corrections during gridding. We also investigate an
alternative form for the gridding kernel that can suppress variations in the
direction-dependent weighting of gridded visibilities by 10s of dB, while
maintaining compact support.Comment: 15 pages, 4 figures. Accepted for publication in JA
Pulse Profiles, Accretion Column Dips and a Flare in GX 1+4 During a Faint State
The Rossi X-ray Timing Explorer (RXTE) spacecraft observed the X-ray pulsar
GX 1+4 for a period of 34 hours on July 19/20 1996. The source faded from an
intensity of ~20 mCrab to a minimum of <~0.7 mCrab and then partially recovered
towards the end of the observation. This extended minimum lasted ~40,000
seconds. Phase folded light curves at a barycentric rotation period of
124.36568 +/- 0.00020 seconds show that near the center of the extended minimum
the source stopped pulsing in the traditional sense but retained a weak dip
feature at the rotation period. Away from the extended minimum the dips are
progressively narrower at higher energies and may be interpreted as
obscurations or eclipses of the hot spot by the accretion column. The pulse
profile changed from leading-edge bright before the extended minimum to
trailing-edge bright after it. Data from the Burst and Transient Source
Experiment (BATSE) show that a torque reversal occurred <10 days after our
observation. Our data indicate that the observed rotation departs from a
constant period with a Pdot/P value of ~-1.5% per year at a 4.5 sigma
significance. We infer that we may have serendipitously obtained data, with
high sensitivity and temporal resolution about the time of an accretion disk
spin reversal. We also observed a rapid flare which had some precursor
activity, close to the center of the extended minimum.Comment: 19 pages, 6 figures, accepted for publication in Astrophysical
Journal (tentatively scheduled for vol. 529 #1, 20 Jan 2000
New H2O masers in Seyfert and FIR bright galaxies
Extragalactic water vapor masers with 50, 1000, 1, and 230 solar (isotropic)
luminosities were detected toward Mrk1066 (UGC2456), Mrk34, NGC3556 and Arp299,
respectively. The interacting system Arp299 appears to show two maser hotspots
separated by 20 arcsec. A statistical analysis of 53 extragalactic H2O sources
indicates (1) that the correlation between IRAS Point Source and H2O
luminosities, established for individual star forming regions in the galactic
disk, also holds for AGN dominated megamaser galaxies, (2) that maser
luminosities are not correlated with 60/100 micron color temperatures and (3)
that only a small fraction of the luminous megamasers detectable with 100-m
sized telescopes have so far been identified. The slope of the H2O luminosity
function, -1.5, indicates that the number of detectable masers is almost
independent of their luminosity. If the LF is not steepening at very high maser
luminosities, H2O megamasers at significant redshifts should be detectable with
present day state-of-the-art facilities.Comment: 16 pages, 10 postscript figures; style file: aa.cls. Accepted for
publication in the Main Journal of Astronomy & Astrophysic
- …
