174 research outputs found

    The Einstein-Vlasov sytem/Kinetic theory

    Get PDF
    The main purpose of this article is to guide the reader to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades where the main focus has been on nonrelativistic- and special relativistic physics, e.g. to model the dynamics of neutral gases, plasmas and Newtonian self-gravitating systems. In 1990 Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (e.g. fluid models). The first part of this paper gives an introduction to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental in order to get a good comprehension of kinetic theory in general relativity.Comment: 31 pages. This article has been submitted to Living Rev. Relativity (http://www.livingreviews.org

    Asymptotic Stability of the Relativistic Boltzmann Equation for the Soft Potentials

    Full text link
    In this paper it is shown that unique solutions to the relativistic Boltzmann equation exist for all time and decay with any polynomial rate towards their steady state relativistic Maxwellian provided that the initial data starts out sufficiently close in LL^\infty_\ell. If the initial data are continuous then so is the corresponding solution. We work in the case of a spatially periodic box. Conditions on the collision kernel are generic in the sense of (Dudy{\'n}ski and Ekiel-Je{\.z}ewska, Comm. Math. Phys., 1988); this resolves the open question of global existence for the soft potentials.Comment: 64 page

    Farm Performance From Holstein-Friesian Cows of Three Genetic Strains on Grazed Pasture

    Get PDF
    Dairy selection objectives and farm production systems in USA and Europe are different from those in New Zealand (NZ). The use of overseas semen in NZ in the last 20 years has changed the genetics of the former NZ Holstein-Friesian (HF) strain. This trial was designed to demonstrate the genetic progress in the NZ HF dairy herd in the last 25 years and how high production potential North American HF cows perform under pasture-based feeding systems

    Excitation Thresholds for Nonlinear Localized Modes on Lattices

    Full text link
    Breathers are spatially localized and time periodic solutions of extended Hamiltonian dynamical systems. In this paper we study excitation thresholds for (nonlinearly dynamically stable) ground state breather or standing wave solutions for networks of coupled nonlinear oscillators and wave equations of nonlinear Schr\"odinger (NLS) type. Excitation thresholds are rigorously characterized by variational methods. The excitation threshold is related to the optimal (best) constant in a class of discr ete interpolation inequalities related to the Hamiltonian energy. We establish a precise connection among dd, the dimensionality of the lattice, 2σ+12\sigma+1, the degree of the nonlinearity and the existence of an excitation threshold for discrete nonlinear Schr\"odinger systems (DNLS). We prove that if σ2/d\sigma\ge 2/d, then ground state standing waves exist if and only if the total power is larger than some strictly positive threshold, νthresh(σ,d)\nu_{thresh}(\sigma, d). This proves a conjecture of Flach, Kaldko& MacKay in the context of DNLS. We also discuss upper and lower bounds for excitation thresholds for ground states of coupled systems of NLS equations, which arise in the modeling of pulse propagation in coupled arrays of optical fibers.Comment: To appear in Nonlinearit

    Hilbert Expansion from the Boltzmann equation to relativistic Fluids

    Get PDF
    We study the local-in-time hydrodynamic limit of the relativistic Boltzmann equation using a Hilbert expansion. More specifically, we prove the existence of local solutions to the relativistic Boltzmann equation that are nearby the local relativistic Maxwellian constructed from a class of solutions to the relativistic Euler equations that includes a large subclass of near-constant, non-vacuum fluid states. In particular, for small Knudsen number, these solutions to the relativistic Boltzmann equation have dynamics that are effectively captured by corresponding solutions to the relativistic Euler equations.Comment: 50 page

    The Einstein-Vlasov System/Kinetic Theory

    Full text link
    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein--Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein--Vlasov system. Since then many theorems on global properties of solutions to this system have been established.Comment: Published version http://www.livingreviews.org/lrr-2011-

    Theorems on existence and global dynamics for the Einstein equations

    Get PDF
    This article is a guide to theorems on existence and global dynamics of solutions of the Einstein equations. It draws attention to open questions in the field. The local-in-time Cauchy problem, which is relatively well understood, is surveyed. Global results for solutions with various types of symmetry are discussed. A selection of results from Newtonian theory and special relativity that offer useful comparisons is presented. Treatments of global results in the case of small data and results on constructing spacetimes with prescribed singularity structure or late-time asymptotics are given. A conjectural picture of the asymptotic behaviour of general cosmological solutions of the Einstein equations is built up. Some miscellaneous topics connected with the main theme are collected in a separate section.Comment: Submitted to Living Reviews in Relativity, major update of Living Rev. Rel. 5 (2002)

    Optimal functional outcome measures for assessing treatment for Dupuytren's disease: A systematic review and recommendations for future practice

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. Copyright © 2013 Ball et al.; licensee BioMed Central Ltd.Background: Dupuytren's disease of the hand is a common condition affecting the palmar fascia, resulting in progressive flexion deformities of the digits and hence limitation of hand function. The optimal treatment remains unclear as outcomes studies have used a variety of measures for assessment. Methods: A literature search was performed for all publications describing surgical treatment, percutaneous needle aponeurotomy or collagenase injection for primary or recurrent Dupuytren’s disease where outcomes had been monitored using functional measures. Results: Ninety-one studies met the inclusion criteria. Twenty-two studies reported outcomes using patient reported outcome measures (PROMs) ranging from validated questionnaires to self-reported measures for return to work and self-rated disability. The Disability of Arm, Shoulder and Hand (DASH) score was the most utilised patient-reported function measure (n=11). Patient satisfaction was reported by eighteen studies but no single method was used consistently. Range of movement was the most frequent physical measure and was reported in all 91 studies. However, the methods of measurement and reporting varied, with seventeen different techniques being used. Other physical measures included grip and pinch strength and sensibility, again with variations in measurement protocols. The mean follow-up time ranged from 2 weeks to 17 years. Conclusions: There is little consistency in the reporting of outcomes for interventions in patients with Dupuytren’s disease, making it impossible to compare the efficacy of different treatment modalities. Although there are limitations to the existing generic patient reported outcomes measures, a combination of these together with a disease-specific questionnaire, and physical measures of active and passive individual joint Range of movement (ROM), grip and sensibility using standardised protocols should be used for future outcomes studies. As Dupuytren’s disease tends to recur following treatment as well as extend to involve other areas of the hand, follow-up times should be standardised and designed to capture both short and long term outcomes

    The Orbital Stability of the Ground States and the Singularity Formation for the Gravitational Vlasov Poisson System

    Get PDF
    International audienceWe study the gravitational Vlasov Poisson system ft+vxfEvf=0f_t+v\cdot\nabla_x f-E\cdot\nabla_vf=0 where E(x)=xϕ(x)E(x)=\nabla_x \phi(x), Δxϕ=ρ(x)\Delta_x\phi=\rho(x), \rho(x)=\int_{\RR^N} f(x,v)dxdv, in dimension N=3,4N=3,4. In dimension N=3N=3 where the problem is subcritical, we prove using concentration compactness techniques that every minimizing sequence to a large class of minimization problems attained on steady states solutions are up to a translation shift relatively compact in the energy space. This implies in particular the orbital stability {\it in the energy space} of the spherically symmetric polytropes what improves the nonlinear stability results obtained for this class in \cite{Guo,GuoRein,Dol}. In dimension N=4N=4 where the problem is L1L^1 critical, we obtain the polytropic steady states as best constant minimizers of a suitable Sobolev type inequality relating the kinetic and the potential energy. We then derive using an explicit pseudo-conformal symmetry the existence of critical mass finite time blow up solutions, and prove more generally a mass concentration phenomenon for finite time blow up solutions. This is the first result of description of a singularity formation in a Vlasov setting. The global structure of the problem is reminiscent to the one for the focusing non linear Schrödinger equation iut=Δuup1uiu_t=-\Delta u-|u|^{p-1}u in the energy space H1(RN)H^1(\R^N)
    corecore