12,458 research outputs found

    Hierarchical formation of bulgeless galaxies II: Redistribution of angular momentum via galactic fountains

    Get PDF
    Within a fully cosmological hydrodynamical simulation, we form a galaxy which rotates at 140 km/s, and is characterised by two loose spiral arms and a bar, indicative of a Hubble Type SBc/d galaxy. We show that our simulated galaxy has no classical bulge, with a pure disc profile at z=1, well after the major merging activity has ended. A long-lived bar subsequently forms, resulting in the formation of a secularly-formed "pseudo" bulge, with the final bulge-to-total light ratio B/T=0.21. We show that the majority of gas which loses angular momentum and falls to the central region of the galaxy during the merging epoch is blown back into the hot halo, with much of it returning later to form stars in the disc. We propose that this mechanism of redistribution of angular momentum via a galactic fountain, when coupled with the results from our previous study which showed why gas outflows are biased to have low angular momentum, can solve the angular momentum/bulgeless disc problem of the cold dark matter paradigm.Comment: 9 Pages, 10 Figures, accepted MNRAS version. Comments welcom

    Resolving the Structure of Cold Dark Matter Halos

    Get PDF
    We examine the effects of mass resolution and force softening on the density profiles of cold dark matter halos that form within cosmological N-body simulations. As we increase the mass and force resolution, we resolve progenitor halos that collapse at higher redshifts and have very high densities. At our highest resolution we have nearly 3 million particles within the virial radius, several orders of magnitude more than previously used and we can resolve more than one thousand surviving dark matter halos within this single virialised system. The halo profiles become steeper in the central regions and we may not have achieved convergence to a unique slope within the inner 10% of the virialised region. Results from two very high resolution halo simulations yield steep inner density profiles, ρ(r)r1.4\rho(r)\sim r^{-1.4}. The abundance and properties of arcs formed within this potential will be different from calculations based on lower resolution simulations. The kinematics of disks within such a steep potential may prove problematic for the CDM model when compared with the observed properties of halos on galactic scales.Comment: Final version, to be published in the ApJLetter

    Real-world comparison of probe vehicle emissions and fuel consumption using diesel and 5 % biodiesel (B5) blend.

    Get PDF
    An instrumented EURO I Ford Mondeo was used to perform a real-world comparison of vehicle exhaust (carbon dioxide, carbon monoxide, hydrocarbons and oxides of nitrogen) emissions and fuel consumption for diesel and 5% biodiesel in diesel blend (B5) fuels. Data were collected on multiple replicates of three standardised on-road journeys: (1) A simple urban route; (2) A combined urban/inter-urban route; and, (3) An urban route subject to significant traffic management. At the total journey measurement level, data collected here indicate that replacing diesel with a B5 substitute could result in significant increases in both NOx emissions (8-13%) and fuel consumption (7-8%). However, statistical analysis of probe vehicle data demonstrated the limitations of comparisons based on such total journey measurements, i.e., methods analogous to those used in conventional dynamometer/drive cycle fuel comparison studies. Here, methods based on the comparison of speed/acceleration emissions and fuel consumption maps are presented. Significant variations across the speed/acceleration surface indicated that direct emission and fuel consumption impacts were highly dependent on the journey/drive cycle employed. The emission and fuel consumption maps were used both as descriptive tools to characterise impacts and predictive tools to estimate journey-specific emission and fuel consumption effects

    Some aspects of dynamic computational modelling of direct current plasma arc phenomena

    Get PDF
    Direct current arc furnaces see considerable use in modern industrial melting and smelting processes. Pyrometallurgical applications for this type of furnace are wide-ranging, and include commodities such as Ferrochrome, Ferronickel, Cobalt, Zinc, Magnesium, Titanium Dioxide, Platinum-group metals1, and others. Central to the operation of such furnaces is the direct current plasma arc, a sustained high temperature jet of ionised gas which is formed between the end of one or more graphite electrodes and the bath of molten process material below. Passage of electric current through the arc inputs energy and maintains the high temperatures necessary for ionisation via ohmic heating. This is balanced by various mechanisms of energy loss from the arc, including volumetric radiation and convection to the molten bath surface below. Much of this energy is delivered to a localised area directly beneath the arc, making it a very efficient means of heating the process material. Flow of plasma in the arc column is driven strongly by electromagnetic Lorentz forces resulting from the constriction of the conduction channel in the vicinity of the electrode. This constriction causes the arc to draw in gas from the surroundings and accelerate it away from the electrode surface, toward the molten bath below (the Maecker effect2). Much research has been conducted in the area of numerical modelling of arc phenomena, starting with Szekely and co-workers3 and becoming increasingly more sophisticated with the advent of better software, property data, and increased computing capability. However, the majority of arc modelling efforts concentrate on steady-state, axisymmetric systems. While valuable from an engineering standpoint these models are not able to describe any transient behaviour exhibited by the arc, or any evolution of the shape and structure of the arc which breaks the symmetry imposed by the model. Both of these aspects are important for a deeper understanding of direct current plasma arc behaviour

    MaGICC baryon cycle: The enrichment history of simulated disc galaxies

    Get PDF
    Using cosmological galaxy formation simulations from the MaGICC (Making Galaxies in a Cosmological Context) project, spanning stellar mass from ∼107 to 3 × 1010 M⊙, we trace the baryonic cycle of infalling gas from the virial radius through to its eventual participation in the star formation process. An emphasis is placed upon the temporal history of chemical enrichment during its passage through the corona and circumgalactic medium. We derive the distributions of time between gas crossing the virial radius and being accreted to the star-forming region (which allows for mixing within the corona), as well as the time between gas being accreted to the star-forming region and then ultimately forming stars (which allows for mixing within the disc). Significant numbers of stars are formed from gas that cycles back through the hot halo after first accreting to the star-forming region. Gas entering high-mass galaxies is pre-enriched in low-mass proto-galaxies prior to entering the virial radius of the central progenitor, with only small amounts of primordial gas accreted, even at high redshift (z ∼ 5). After entering the virial radius, significant further enrichment occurs prior to the accretion of the gas to the star-forming region, with gas that is feeding the star-forming region surpassing 0.1 Z⊙ by z = 0. Mixing with halo gas, itself enriched via galactic fountains, is thus crucial in determining the metallicity at which gas is accreted to the disc. The lowest mass simulated galaxy (Mvir ∼ 2 × 1010 M⊙, with M⋆ ∼ 107 M⊙), by contrast, accretes primordial gas through the virial radius and on to the disc, throughout its history. Much like the case for classical analytical solutions to the so-called ‘G-dwarf problem’, overproduction of low-metallicity stars is ameliorated by the interplay between the time of accretion on to the disc and the subsequent involvement in star formation – i.e. due to the inefficiency of star formation. Finally, gas outflow/metal removal rates from star-forming regions as a function of galactic mass are presented

    Forming Disk Galaxies in Lambda CDM Simulations

    Full text link
    We used fully cosmological, high resolution N-body + SPH simulations to follow the formation of disk galaxies with rotational velocities between 135 and 270 km/sec in a Lambda CDM universe. The simulations include gas cooling, star formation, the effects of a uniform UV background and a physically motivated description of feedback from supernovae. The host dark matter halos have a spin and last major merger redshift typical of galaxy sized halos as measured in recent large scale N--Body simulations. The simulated galaxies form rotationally supported disks with realistic exponential scale lengths and fall on both the I-band and baryonic Tully Fisher relations. An extended stellar disk forms inside the Milky Way sized halo immediately after the last major merger. The combination of UV background and SN feedback drastically reduces the number of visible satellites orbiting inside a Milky Way sized halo, bringing it in fair agreement with observations. Our simulations predict that the average age of a primary galaxy's stellar population decreases with mass, because feedback delays star formation in less massive galaxies. Galaxies have stellar masses and current star formation rates as a function of total mass that are in good agreement with observational data. We discuss how both high mass and force resolution and a realistic description of star formation and feedback are important ingredients to match the observed properties of galaxies.Comment: Revised version after the referee's comments. Conclusions unchanged. 2 new plots. MNRAS in press. 20 plots. 21 page

    Density profiles and substructure of dark matter halos: converging results at ultra-high numerical resolution

    Get PDF
    Can N-body simulations reliably determine the structural properties of dark matter halos? Focussing on a Virgo-sized galaxy cluster, we increase the resolution of current ``high resolution simulations'' by almost an order of magnitude to examine the convergence of the important physical quantities. We have 4 million particles within the cluster and force resolution 0.5 kpc/h (0.05% of the virial radius). The central density profile has a logarithmic slope of -1.5, as found in lower resolution studies of the same halo, indicating that the profile has converged to the ``physical'' limit down to scales of a few kpc. Also the abundance of substructure is consistent with that derived from lower resolution runs; on the scales explored, the mass and circular velocity functions are close to power laws of exponents ~ -1.9 and -4. Overmerging appears to be globally unimportant for suhalos with circular velocities > 100 km/s. We can trace most of the cluster progenitors from z=3 to the present; the central object (the dark matter analog of a cD galaxy)is assembled between z=3 and 1 from the merging of a dozen halos with v_circ \sim 300 km/s. The mean circular velocity of the subhalos decreases by ~ 20% over 5 billion years, due to tidal mass loss. The velocity dispersions of halos and dark matter globally agree within 10%, but the halos are spatially anti-biased, and, in the very central region of the cluster, they show positive velocity bias; however, this effect appears to depend on numerical resolution.Comment: 19 pages, 13 figures, ApJ, in press. Text significantly clarifie

    Axiomatic approach to radiation reaction of scalar point particles in curved spacetime

    Full text link
    Several different methods have recently been proposed for calculating the motion of a point particle coupled to a linearized gravitational field on a curved background. These proposals are motivated by the hope that the point particle system will accurately model certain astrophysical systems which are promising candidates for observation by the new generation of gravitational wave detectors. Because of its mathematical simplicity, the analogous system consisting of a point particle coupled to a scalar field provides a useful context in which to investigate these proposed methods. In this paper, we generalize the axiomatic approach of Quinn and Wald in order to produce a general expression for the self force on a point particle coupled to a scalar field following an arbitrary trajectory on a curved background. Our equation includes the leading order effects of the particle's own fields, commonly referred to as ``self force'' or ``radiation reaction'' effects. We then explore the equations of motion which follow from this expression in the absence of non-scalar forces.Comment: 17 pages, 1 figur

    Poly[[tetra­kis­(μ2-pyrazine N,N′-dioxide-κ2 O:O′)erbium(III)] tris­(perchlorate)]

    Get PDF
    The title three-dimensional coordination network, {[Er(C4H4N2O2)4](ClO4)3}n, is isostructural to that of other lanthanides. The Er+3 cation lies on a fourfold roto-inversion axis. It is coordinated in a distorted square-anti­prismatic fashion by eight O atoms from bridging pyrazine N,N′-dioxide ligands. There are two unique pyrazine N,N′-dioxide ligands. One ring is located around an inversion center, and there is a a twofold rotation axis at the center of the other ring. There are also two unique perchlorate anions. One is centered on a twofold rotation axis and the other on a fourfold roto-inversion axis. The perchlorate anions are located in channels that run perpendicular to (001) and (110) and inter­act with the coordination network through C—H⋯O hydrogen bonds
    corecore