571 research outputs found

    Balanced neural architecture and the idling brain

    Get PDF
    A signature feature of cortical spike trains is their trial-to-trial variability. This variability is large in the spontaneous state and is reduced when cortex is driven by a stimulus or task. Models of recurrent cortical networks with unstructured, yet balanced, excitation and inhibition generate variability consistent with evoked conditions. However, these models produce spike trains which lack the long timescale fluctuations and large variability exhibited during spontaneous cortical dynamics. We propose that global network architectures which support a large number of stable states (attractor networks) allow balanced networks to capture key features of neural variability in both spontaneous and evoked conditions. We illustrate this using balanced spiking networks with clustered assembly, feedforward chain, and ring structures. By assuming that global network structure is related to stimulus preference, we show that signal correlations are related to the magnitude of correlations in the spontaneous state. Finally, we contrast the impact of stimulation on the trial-to-trial variability in attractor networks with that of strongly coupled spiking networks with chaotic firing rate instabilities, recently investigated by Ostojic (2014). We find that only attractor networks replicate an experimentally observed stimulus-induced quenching of trial-to-trial variability. In total, the comparison of the trial-variable dynamics of single neurons or neuron pairs during spontaneous and evoked activity can be a window into the global structure of balanced cortical networks. © 2014 Doiron and Litwin-Kumar

    Solitonic Excitations in Linearly Coherent Channels of Bilayer Quantum Hall Stripes

    Full text link
    In some range of interlayer distances, the ground state of the two-dimensional electron gas at filling factor nu =4N+1 with N=0,1,2,... is a coherent stripe phase in the Hartree-Fock approximation. This phase has one-dimensional coherent channels that support charged excitations in the form of pseudospin solitons. In this work, we compute the transport gap of the coherent striped phase due to the creation of soliton-antisoliton pairs using a supercell microscopic unrestricted Hartree-Fock approach. We study this gap as a function of interlayer distance and tunneling amplitude. Our calculations confirm that the soliton-antisoliton excitation energy is lower than the corresponding Hartree-Fock electron-hole pair energy. We compare our results with estimates of the transport gap obtained from a field-theoretic model valid in the limit of slowly varying pseudospin textures.Comment: 15 pages, 8 figure

    Electrical transport through a single-electron transistor strongly coupled to an oscillator

    Full text link
    We investigate electrical transport through a single-electron transistor coupled to a nanomechanical oscillator. Using a combination of a master-equation approach and a numerical Monte Carlo method, we calculate the average current and the current noise in the strong-coupling regime, studying deviations from previously derived analytic results valid in the limit of weak-coupling. After generalizing the weak-coupling theory to enable the calculation of higher cumulants of the current, we use our numerical approach to study how the third cumulant is affected in the strong-coupling regime. In this case, we find an interesting crossover between a weak-coupling transport regime where the third cumulant heavily depends on the frequency of the oscillator to one where it becomes practically independent of this parameter. Finally, we study the spectrum of the transport noise and show that the two peaks found in the weak-coupling limit merge on increasing the coupling strength. Our calculation of the frequency-dependence of the noise also allows to describe how transport-induced damping of the mechanical oscillations is affected in the strong-coupling regime.Comment: 11 pages, 9 figure

    Dynamical matrix of two-dimensional electron crystals

    Full text link
    In a quantizing magnetic field, the two-dimensional electron (2DEG) gas has a rich phase diagram with broken translational symmetry phases such as Wigner, bubble, and stripe crystals. In this paper, we derive a method to get the dynamical matrix of these crystals from a calculation of the density response function performed in the Generalized Random Phase Approximation (GRPA). We discuss the validity of our method by comparing the dynamical matrix calculated from the GRPA with that obtained from standard elasticity theory with the elastic coefficients obtained from a calculation of the deformation energy of the crystal.Comment: Revised version published in Phys. Rev. B. 12 pages with 11 postscripts figure

    Anisotropic states of two-dimensional electrons in high magnetic fields

    Full text link
    We study the collective states formed by two-dimensional electrons in Landau levels of index n2n\ge 2 near half-filling. By numerically solving the self-consistent Hartree-Fock (HF) equations for a set of oblique two-dimensional lattices, we find that the stripe state is an anisotropic Wigner crystal (AWC), and determine its precise structure for varying values of the filling factor. Calculating the elastic energy, we find that the shear modulus of the AWC is small but finite (nonzero) within the HF approximation. This implies, in particular, that the long-wavelength magnetophonon mode in the stripe state vanishes like q3/2q^{3/2} as in an ordinary Wigner crystal, and not like q5/2q^{5/2} as was found in previous studies where the energy of shear deformations was neglected.Comment: minor corrections; 5 pages, 4 figures; version to be published in Physical Review Letter

    Improved position measurement of nano electromechanical systems using cross correlations

    Full text link
    We consider position measurements using the cross-correlated output of two tunnel junction position detectors. Using a fully quantum treatment, we calculate the equation of motion for the density matrix of the coupled detector-detector-mechanical oscillator system. After discussing the presence of a bound on the peak-to-background ratio in a position measurement using a single detector, we show how one can use detector cross correlations to overcome this bound. We analyze two different possible experimental realizations of the cross correlation measurement and show that in both cases the maximum cross-correlated output is obtained when using twin detectors and applying equal bias to each tunnel junction. Furthermore, we show how the double-detector setup can be exploited to drastically reduce the added displacement noise of the oscillator.Comment: 9 pages, 1 figure; v2: new Sec.

    Transport properties of a superconducting single-electron transistor coupled to a nanomechanical oscillator

    Full text link
    We investigate a superconducting single-electron transistor capacitively coupled to a nanomechanical oscillator and focus on the double Josephson quasiparticle resonance. The existence of two coherent Cooper pair tunneling events is shown to lead to pronounced backaction effects. Measuring the current and the shot noise provides a direct way of gaining information on the state of the oscillator. In addition to an analytical discussion of the linear-response regime, we discuss and compare results of higher-order approximation schemes and a fully numerical solution. We find that cooling of the mechanical resonator is possible, and that there are driven and bistable oscillator states at low couplings. Finally, we also discuss the frequency dependence of the charge noise and the current noise of the superconducting single electron transistor.Comment: 19 pages, 11 figures, published in PR

    Nernst and Seebeck Coefficients of the Cuprate SuperconductorYBa2_2Cu3_3O6.67_{6.67}: A Study of Fermi Surface Reconstruction

    Full text link
    The Seebeck and Nernst coefficients SS and ν\nu of the cuprate superconductor YBa2_2Cu3_3Oy_y (YBCO) were measured in a single crystal with doping p=0.12p = 0.12 in magnetic fields up to H = 28 T. Down to T=9 K, ν\nu becomes independent of field by H30H \simeq 30 T, showing that superconducting fluctuations have become negligible. In this field-induced normal state, S/TS/T and ν/T\nu/T are both large and negative in the T0T \to 0 limit, with the magnitude and sign of S/TS/T consistent with the small electron-like Fermi surface pocket detected previously by quantum oscillations and the Hall effect. The change of sign in S(T)S(T) at T50T \simeq 50 K is remarkably similar to that observed in La2x_{2-x}Bax_xCuO4_4, La2xy_{2-x-y}Ndy_ySrx_xCuO4_4 and La2xy_{2-x-y}Euy_ySrx_xCuO4_4, where it is clearly associated with the onset of stripe order. We propose that a similar density-wave mechanism causes the Fermi surface reconstruction in YBCO.Comment: Final version accepted for publication in Phys. Rev. Lett. New title, shorter abstract, minor revision of text and added reference

    Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy

    Full text link
    The Fermi surface of a metal is the fundamental basis from which its properties can be understood. In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report the discovery of a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency demonstrates that it is a distinct Fermi surface and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction caused by the charge-density-wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap.Comment: 23 pages, 5 figure
    corecore