240 research outputs found

    He Was not Alone: Bosman in Context

    Get PDF
    This chapter analyses the social, political, historical and economic context of the Bosman case. The chapter argues that Bosman needs to be understood as yet another stage of a continued process of commercialisation and transformation in European football. Football players fought to transform their employment conditions since the 1960s. Clubs questioned the legitimacy of UEFA to regulate European football and organise club competitions as they wanted a larger share of the commercial profits of the game. Finally, political institutions in Brussels started to exert pressure on football governing bodies to modify the international transfer system. The chapter argues that, taking these into account, major transformations in the governance and regulation structures of football were needed, and they would have happened even without the Bosman ruling. Consequently, Bosman cannot be seen, on its own, as the only cause of the transformation of modern football in Europe. Finally, the chapter dedicates some space to Jean Marc Bosman’s legal team composed by Luc Misson and Jean Louis Dupont. It was their legal expertise what made a challenge before the Belgian and European courts also possible

    The Bloom's syndrome helicase (BLM) interacts physically and functionally with p12, the smallest subunit of human DNA polymerase δ

    Get PDF
    Bloom's syndrome (BS) is a cancer predisposition disorder caused by mutation of the BLM gene, encoding a member of the RecQ helicase family. Although the phenotype of BS cells is suggestive of a role for BLM in repair of stalled or damaged replication forks, thus far there has been no direct evidence that BLM associates with any of the three human replicative DNA polymerases. Here, we show that BLM interacts specifically in vitro and in vivo with p12, the smallest subunit of human POL δ (hPOL δ). The hPOL δ enzyme, as well as the isolated p12 subunit, stimulates the DNA helicase activity of BLM. Conversely, BLM stimulates hPOL δ strand displacement activity. Our results provide the first functional link between BLM and the replicative machinery in human cells, and suggest that BLM might be recruited to sites of disrupted replication through an interaction with hPOL δ. Finally, our data also define a novel role for the poorly characterized p12 subunit of hPOL δ

    Plasma 24S-hydroxycholesterol levels in elderly subjects with late onset Alzheimer's disease or vascular dementia: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In central nervous system cholesterol cannot be degraded but is secreted into circulation predominantly in the form of its polar metabolite 24(<it>S</it>)-hydroxycholesterol (24S-OH-Chol). Some studies suggested an association between 24S-OH-Chol metabolism and different neurological diseases including dementia. A possible decrease in 24S-OH-Chol plasma levels has been reported late onset Alzheimer's disease (LOAD) and vascular dementia (VD), but results of previous studies are partially contradictory.</p> <p>Methods</p> <p>By high-speed liquid chromatography/tandem mass spectrometry we evaluated the plasma levels of 24S-OH-Chol in a sample of 160 older individuals: 60 patients with LOAD, 35 patients with VD, 25 subjects affected by cognitive impairment no-dementia (CIND), and 40 (144 for genetics study) cognitively normal Controls. We also investigated the possible association between PPARgamma Pro12Ala polymorphism and dementia or 24S-OH-Chol levels.</p> <p>Results</p> <p>Compared with Controls, plasma 24S-OH-Chol levels were higher in LOAD and lower in VD; a slight not-significant increase in CIND was observed (ANOVA p: 0.001). A positive correlation between 24S-OH-Chol/TC ratio and plasma C reactive protein (CRP) levels was found in the whole sample, independent of possible confounders (multiple regression p: 0.04; r<sup>2</sup>: 0.10). This correlation was strong in LOAD (r: 0.39), still present in CIND (r: 0.20), but was absent in VD patients (r: 0.08). The PPARgamma Pro12Ala polymorphism was not associated with the diagnosis of LOAD, VD, or CIND; no correlation emerged between the Ala allele and 24S-OH-Chol plasma levels.</p> <p>Conclusions</p> <p>Our results suggest that plasma 24S-OH-Chol levels might be increased in the first stages of LOAD, and this phenomenon might be related with systemic inflammation. The finding of lower 24S-OH-Chol concentrations in VD might be related with a more advanced stage of VD compared with LOAD in our sample, and/or to different pathogenetic mechanisms and evolution of these two forms of dementia.</p

    Comprehensive Gene and microRNA Expression Profiling Reveals a Role for microRNAs in Human Liver Development

    Get PDF
    BACKGROUND AND AIMS: microRNAs (miRNAs) are small noncoding RNAs that regulate cognate mRNAs post-transcriptionally. miRNAs have been implicated in regulating gene expression in embryonic developmental processes, including proliferation and differentiation. The liver is a multifunctional organ, which undergoes rapid changes during the developmental period and relies on tightly-regulated gene expression. Little is known regarding the complex expression patterns of both mRNAs and miRNAs during the early stages of human liver development, and the role of miRNAs in the regulation of this process has not been studied. The aim of this work was to study the impact of miRNAs on gene expression during early human liver development. METHODS: Global gene and miRNA expression were profiled in adult and in 9-12w human embryonic livers, using high-density microarrays and quantitative RT-PCR. RESULTS: Embryonic liver samples exhibited a gene expression profile that differentiated upon progression in the developmental process, and revealed multiple regulated genes. miRNA expression profiling revealed four major expression patterns that correlated with the known function of regulated miRNAs. Comparison of the expression of the most regulated miRNAs to that of their putative targets using a novel algorithm revealed a significant anti-correlation for several miRNAs, and identified the most active miRNAs in embryonic and in adult liver. Furthermore, our algorithm facilitated the identification of TGFbeta-R1 as a novel target gene of let-7. CONCLUSIONS: Our results uncover multiple regulated miRNAs and genes throughout human liver development, and our algorithm assists in identification of novel miRNA targets with potential roles in liver development

    Saturated Fatty Acids and Risk of Coronary Heart Disease: Modulation by Replacement Nutrients

    Get PDF
    Despite the well-established observation that substitution of saturated fats for carbohydrates or unsaturated fats increases low-density lipoprotein (LDL) cholesterol in humans and animal models, the relationship of saturated fat intake to risk for atherosclerotic cardiovascular disease in humans remains controversial. A critical question is what macronutrient should be used to replace saturated fat. Substituting polyunsaturated fat for saturated fat reduces LDL cholesterol and the total cholesterol to high-density lipoprotein cholesterol ratio. However, replacement of saturated fat by carbohydrates, particularly refined carbohydrates and added sugars, increases levels of triglyceride and small LDL particles and reduces high-density lipoprotein cholesterol, effects that are of particular concern in the context of the increased prevalence of obesity and insulin resistance. Epidemiologic studies and randomized clinical trials have provided consistent evidence that replacing saturated fat with polyunsaturated fat, but not carbohydrates, is beneficial for coronary heart disease. Therefore, dietary recommendations should emphasize substitution of polyunsaturated fat and minimally processed grains for saturated fat

    Hmgcr in the Corpus Allatum Controls Sexual Dimorphism of Locomotor Activity and Body Size via the Insulin Pathway in Drosophila

    Get PDF
    The insulin signaling pathway has been implicated in several physiological and developmental processes. In mammals, it controls expression of 3-Hydroxy-3-Methylglutaryl CoA Reductase (HMGCR), a key enzyme in cholesterol biosynthesis. In insects, which can not synthesize cholesterol de novo, the HMGCR is implicated in the biosynthesis of juvenile hormone (JH). However, the link between the insulin pathway and JH has not been established. In Drosophila, mutations in the insulin receptor (InR) decrease the rate of JH synthesis. It is also known that both the insulin pathway and JH play a role in the control of sexual dimorphism in locomotor activity. In studies here, to demonstrate that the insulin pathway and HMGCR are functionally linked in Drosophila, we first show that hmgcr mutation also disrupts the sexual dimorphism. Similarly to the InR, HMGCR is expressed in the corpus allatum (ca), which is the gland where JH biosynthesis occurs. Two p[hmgcr-GAL4] lines were therefore generated where RNAi was targeted specifically against the HMGCR or the InR in the ca. We found that RNAi-HMGCR blocked HMGCR expression, while the RNAi-InR blocked both InR and HMGCR expression. Each RNAi caused disruption of sexual dimorphism and produced dwarf flies at specific rearing temperatures. These results provide evidence: (i) that HMGCR expression is controlled by the InR and (ii) that InR and HMGCR specifically in the ca, are involved in the control of body size and sexual dimorphism of locomotor activity

    Cholesterol and Lipoprotein Dynamics in a Hibernating Mammal

    Get PDF
    Hibernating mammals cease feeding during the winter and rely primarily on stored lipids to fuel alternating periods of torpor and arousal. How hibernators manage large fluxes of lipids and sterols over the annual hibernation cycle is poorly understood. The aim of this study was to investigate lipid and cholesterol transport and storage in ground squirrels studied in spring, summer, and several hibernation states. Cholesterol levels in total plasma, HDL and LDL particles were elevated in hibernators compared with spring or summer squirrels. Hibernation increased plasma apolipoprotein A-I expression and HDL particle size. Expression of cholesterol 7 alpha-hydroxylase was 13-fold lower in hibernators than in active season squirrels. Plasma triglycerides were reduced by fasting in spring but not summer squirrels. In hibernators plasma β-hydroxybutyrate was elevated during torpor whereas triglycerides were low relative to normothermic states. We conclude that the switch to a lipid-based metabolism during winter, coupled with reduced capacity to excrete cholesterol creates a closed system in which efficient use of lipoproteins is essential for survival

    Lithium and GSK3-β promoter gene variants influence white matter microstructure in bipolar disorder

    Get PDF
    Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase 3-β (GSK3-β). The less active GSK3-β promoter gene variants have been associated with less detrimental clinical features of BD. GSK3-β gene variants and lithium can influence brain gray matter structure in psychiatric conditions. Diffusion tensor imaging (DTI) measures of white matter (WM) integrity showed widespred disruption of WM structure in BD. In a sample of 70 patients affected by a major depressive episode in course of BD, we investigated the effect of ongoing long-term lithium treatment and GSK3-β promoter rs334558 polymorphism on WM microstructure, using DTI and tract-based spatial statistics with threshold-free cluster enhancement. We report that the less active GSK3-β rs334558*C gene-promoter variants, and the long-term administration of the GSK3-β inhibitor lithium, were associated with increases of DTI measures of axial diffusivity (AD) in several WM fiber tracts, including corpus callosum, forceps major, anterior and posterior cingulum bundle (bilaterally including its hippocampal part), left superior and inferior longitudinal fasciculus, left inferior fronto-occipital fasciculus, left posterior thalamic radiation, bilateral superior and posterior corona radiata, and bilateral corticospinal tract. AD reflects the integrity of axons and myelin sheaths. We suggest that GSK3-β inhibition and lithium could counteract the detrimental influences of BD on WM structure, with specific benefits resulting from effects on specific WM tracts contributing to the functional integrity of the brain and involving interhemispheric, limbic, and large frontal, parietal, and fronto-occipital connections
    corecore