5,055 research outputs found
Direct and inverse spectral transform for the relativistic Toda lattice and the connection with Laurent orthogonal polynomials
We introduce a spectral transform for the finite relativistic Toda lattice
(RTL) in generalized form. In the nonrelativistic case, Moser constructed a
spectral transform from the spectral theory of symmetric Jacobi matrices. Here
we use a non-symmetric generalized eigenvalue problem for a pair of bidiagonal
matrices (L,M) to define the spectral transform for the RTL. The inverse
spectral transform is described in terms of a terminating T-fraction. The
generalized eigenvalues are constants of motion and the auxiliary spectral data
have explicit time evolution. Using the connection with the theory of Laurent
orthogonal polynomials, we study the long-time behaviour of the RTL. As in the
case of the Toda lattice the matrix entries have asymptotic limits. We show
that L tends to an upper Hessenberg matrix with the generalized eigenvalues
sorted on the diagonal, while M tends to the identity matrix.Comment: 24 pages, 9 figure
Albedo and Reflection Spectra of Extrasolar Giant Planets
We generate theoretical albedo and reflection spectra for a full range of
extrasolar giant planet (EGP) models, from Jovian to 51-Pegasi class objects.
Our albedo modeling utilizes the latest atomic and molecular cross sections, a
Mie theory treatment of extinction by condensates, a variety of particle size
distributions, and an extension of the Feautrier radiative transfer method
which allows for a general treatment of the scattering phase function. We find
that due to qualitative similarities in the compositions and spectra of objects
within each of five broad effective temperature ranges, it is natural to
establish five representative EGP albedo classes: a ``Jovian'' class (T K; Class I) with tropospheric ammonia clouds, a ``water
cloud'' class (T K; Class II) primarily affected by
condensed HO, a ``clear'' class (T K; Class III)
which lacks clouds, and two high-temperature classes: Class IV (900 K
T 1500 K) for which alkali metal absorption
predominates, and Class V (T 1500 K and/or low surface
gravity ( 10 cm s)) for which a high silicate layer
shields a significant fraction of the incident radiation from alkali metal and
molecular absorption. The resonance lines of sodium and potassium are expected
to be salient features in the reflection spectra of Class III, IV, and V
objects. We derive Bond albedos and effective temperatures for the full set of
known EGPs and explore the possible effects of non-equilibrium condensed
products of photolysis above or within principal cloud decks. As in Jupiter,
such species can lower the UV/blue albedo substantially, even if present in
relatively small mixing ratios.Comment: revised LaTeX manuscript accepted to Ap.J.; also available at
http://jupiter.as.arizona.edu/~burrows/paper
Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog with Measured Completeness and Reliability Based on Data Release 25
We present the Kepler Object of Interest (KOI) catalog of transiting exoplanets based on searching 4 yr of Kepler time series photometry (Data Release 25, Q1–Q17). The catalog contains 8054 KOIs, of which 4034 are planet candidates with periods between 0.25 and 632 days. Of these candidates, 219 are new, including two in multiplanet systems (KOI-82.06 and KOI-2926.05) and 10 high-reliability, terrestrial-size, habitable zone candidates. This catalog was created using a tool called the Robovetter, which automatically vets the DR25 threshold crossing events (TCEs). The Robovetter also vetted simulated data sets and measured how well it was able to separate TCEs caused by noise from those caused by low signal-to-noise transits. We discuss the Robovetter and the metrics it uses to sort TCEs. For orbital periods less than 100 days the Robovetter completeness (the fraction of simulated transits that are determined to be planet candidates) across all observed stars is greater than 85%. For the same period range, the catalog reliability (the fraction of candidates that are not due to instrumental or stellar noise) is greater than 98%. However, for low signal-to-noise candidates between 200 and 500 days around FGK-dwarf stars, the Robovetter is 76.7% complete and the catalog is 50.5% reliable. The KOI catalog, the transit fits, and all of the simulated data used to characterize this catalog are available at the NASA Exoplanet Archive
Kepler-20: A Sun-like Star with Three Sub-Neptune Exoplanets and Two Earth-size Candidates
We present the discovery of the Kepler-20 planetary system, which we
initially identified through the detection of five distinct periodic transit
signals in the Kepler light curve of the host star 2MASSJ19104752+4220194. We
find a stellar effective temperature Teff=5455+-100K, a metallicity of
[Fe/H]=0.01+-0.04, and a surface gravity of log(g)=4.4+-0.1. Combined with an
estimate of the stellar density from the transit light curves we deduce a
stellar mass of Mstar=0.912+-0.034 Msun and a stellar radius of
Rstar=0.944^{+0.060}_{-0.095} Rsun. For three of the transit signals, our
results strongly disfavor the possibility that these result from astrophysical
false positives. We conclude that the planetary scenario is more likely than
that of an astrophysical false positive by a factor of 2e5 (Kepler-20b), 1e5
(Kepler-20c), and 1.1e3 (Kepler-20d), sufficient to validate these objects as
planetary companions. For Kepler-20c and Kepler-20d, the blend scenario is
independently disfavored by the achromaticity of the transit: From Spitzer data
gathered at 4.5um, we infer a ratio of the planetary to stellar radii of
0.075+-0.015 (Kepler-20c) and 0.065+-0.011 (Kepler-20d), consistent with each
of the depths measured in the Kepler optical bandpass. We determine the orbital
periods and physical radii of the three confirmed planets to be 3.70d and
1.91^{+0.12}_{-0.21} Rearth for Kepler-20b, 10.85 d and 3.07^{+0.20}_{-0.31}
Rearth for Kepelr-20c, and 77.61 d and 2.75^{+0.17}_{-0.30} Rearth for
Kepler-20d. From multi-epoch radial velocities, we determine the masses of
Kepler-20b and Kepler-20c to be 8.7\+-2.2 Mearth and 16.1+-3.5 Mearth,
respectively, and we place an upper limit on the mass of Kepler-20d of 20.1
Mearth (2 sigma).Comment: accepted by ApJ, 58 pages, 12 figures revised Jan 2012 to correct
table 2 and clarify planet parameter extractio
Validation of the Exoplanet Kepler-21b using PAVO/CHARA Long-Baseline Interferometry
We present long-baseline interferometry of the Kepler exoplanet host star
HD179070 (Kepler-21) using the PAVO beam combiner at the CHARA Array. The
visibility data are consistent with a single star and exclude stellar
companions at separations ~1-1000 mas (~ 0.1-113 AU) and contrasts < 3.5
magnitudes. This result supports the validation of the 1.6 R_{earth} exoplanet
Kepler-21b by Howell et al. (2012) and complements the constraints set by
adaptive optics imaging, speckle interferometry, and radial velocity
observations to rule out false-positives due to stellar companions. We conclude
that long-baseline interferometry has strong potential to validate transiting
extrasolar planets, particularly for future projects aimed at brighter stars
and for host stars where radial velocity follow-up is not available.Comment: 5 pages, 3 figures, accepted for publication in MNRAS Letters; v2:
minor changes added in proo
Challenges in conducting community-driven research created by differing ways of talking and thinking about science: a researcher’s perspective
Increasingly, health scientists are becoming aware that research collaborations that include community partnerships can be an effective way to broaden the scope and enhance the impact of research aimed at improving public health. Such collaborations extend the reach of academic scientists by integrating a variety of perspectives and thus strengthening the applicability of the research. Communication challenges can arise, however, when attempting to address specific research questions in these collaborations. In particular, inconsistencies can exist between scientists and community members in the use and interpretation of words and other language features, particularly when conducting research with a biomedical component. Additional challenges arise from differing perceptions of the investigative process. There may be divergent perceptions about how research questions should and can be answered, and in expectations about requirements of research institutions and research timelines. From these differences, misunderstandings can occur about how the results will ultimately impact the community. These communication issues are particularly challenging when scientists and community members are from different ethnic and linguistic backgrounds that may widen the gap between ways of talking and thinking about science, further complicating the interactions and exchanges that are essential for effective joint research efforts. Community-driven research that aims to describe the burden of disease associated with Helicobacter pylori infection is currently underway in northern Aboriginal communities located in the Yukon and Northwest Territories, Canada, with the goal of identifying effective public health strategies for reducing health risks from this infection. This research links community representatives, faculty from various disciplines at the University of Alberta, as well as territorial health care practitioners and officials. This highly collaborative work will be used to illustrate, from a researcher’s perspective, some of the challenges of conducting public health research in teams comprising members with varying backgrounds. The consequences of these challenges will be outlined, and potential solutions will be offered
The First Extrasolar Planet Discovered with a New Generation High Throughput Doppler Instrument
We report the detection of the first extrasolar planet, ET-1 (HD 102195b),
using the Exoplanet Tracker (ET), a new generation Doppler instrument. The
planet orbits HD 102195, a young star with solar metallicity that may be part
of the local association. The planet imparts radial velocity variability to the
star with a semiamplitude of m s and a period of 4.11 days.
The planetary minimum mass () is .Comment: 42 pages, 11 figures and 5 tables, Accepted for publication in Ap
Planetary Candidates Observed by Kepler V: Planet Sample from Q1-Q12 (36 Months)
The Kepler mission discovered 2842 exoplanet candidates with 2 years of data.
We provide updates to the Kepler planet candidate sample based upon 3 years
(Q1-Q12) of data. Through a series of tests to exclude false-positives,
primarily caused by eclipsing binary stars and instrumental systematics, 855
additional planetary candidates have been discovered, bringing the total number
known to 3697. We provide revised transit parameters and accompanying posterior
distributions based on a Markov Chain Monte Carlo algorithm for the cumulative
catalogue of Kepler Objects of Interest. There are now 130 candidates in the
cumulative catalogue that receive less than twice the flux the Earth receives
and more than 1100 have a radius less than 1.5 Rearth. There are now a dozen
candidates meeting both criteria, roughly doubling the number of candidate
Earth analogs. A majority of planetary candidates have a high probability of
being bonafide planets, however, there are populations of likely
false-positives. We discuss and suggest additional cuts that can be easily
applied to the catalogue to produce a set of planetary candidates with good
fidelity. The full catalogue is publicly available at the NASA Exoplanet
Archive.Comment: Accepted for publication, ApJ
Accretion of Planetary Material onto Host Stars
Accretion of planetary material onto host stars may occur throughout a star's
life. Especially prone to accretion, extrasolar planets in short-period orbits,
while relatively rare, constitute a significant fraction of the known
population, and these planets are subject to dynamical and atmospheric
influences that can drive significant mass loss. Theoretical models frame
expectations regarding the rates and extent of this planetary accretion. For
instance, tidal interactions between planets and stars may drive complete
orbital decay during the main sequence. Many planets that survive their stars'
main sequence lifetime will still be engulfed when the host stars become red
giant stars. There is some observational evidence supporting these predictions,
such as a dearth of close-in planets around fast stellar rotators, which is
consistent with tidal spin-up and planet accretion. There remains no clear
chemical evidence for pollution of the atmospheres of main sequence or red
giant stars by planetary materials, but a wealth of evidence points to active
accretion by white dwarfs. In this article, we review the current understanding
of accretion of planetary material, from the pre- to the post-main sequence and
beyond. The review begins with the astrophysical framework for that process and
then considers accretion during various phases of a host star's life, during
which the details of accretion vary, and the observational evidence for
accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie
The proton and deuteron F_2 structure function at low Q^2
Measurements of the proton and deuteron structure functions are
presented. The data, taken at Jefferson Lab Hall C, span the four-momentum
transfer range GeV, and Bjorken values from 0.009 to
0.45, thus extending the knowledge of to low values of at low .
Next-to-next-to-leading order calculations using recent parton distribution
functions start to deviate from the data for GeV at the low and
high -values. Down to the lowest value of , the structure function is
in good agreement with a parameterization of based on data that have been
taken at much higher values of or much lower values of , and which is
constrained by data at the photon point. The ratio of the deuteron and proton
structure functions at low remains well described by a logarithmic
dependence on at low .Comment: 3 figures, submitted pape
- …
