38 research outputs found

    Innovation, low energy buildings and intermediaries in Europe: systematic case study review

    Get PDF
    As buildings throughout their lifecycle account for circa 40% of total energy use in Europe, reducing energy use of the building stock is a key task. This task is, however, complicated by a range of factors, including slow renewal and renovation rates of buildings, multiple non- coordinated actors, conservative building practices, and limited competence to innovate. Drawing from academic literature published during 2005-2015, this article carries out a systematic review of case studies on low energy innovations in the European residential building sector, analysing their drivers. Specific attention is paid to intermediary actors in facilitating innovation processes and creating new opportunities. The study finds that qualitative case study literature on low energy building innovation has been limited, particularly regarding the existing building stock. Environmental concerns, EU, national and local policies have been the key drivers; financial, knowledge and social sustainability and equity drivers have been of modest importance; while design, health and comfort, and market drivers have played a minor role. Intermediary organisations and individuals have been important through five processes: (1) facilitating individual building projects, (2) creating niche markets, (3) implementing new practices in social housing stock, (4) supporting new business model creation, and (5) facilitating building use post construction. The intermediaries have included both public and private actors, while local authority agents have acted as intermediaries in several cases

    Titanium Dioxide Nanoparticles: Synthesis, X-Ray Line Analysis and Chemical Composition Study

    Get PDF
    TiO2 nanoparticleshave been synthesized by the sol-gel method using titanium alkoxide and isopropanolas a precursor. The structural properties and chemical composition of the TiO2 nanoparticles were studied usingX-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy.The X-ray powder diffraction pattern confirms that the particles are mainly composed of the anatase phase with the preferential orientation along [101] direction.The physical parameters such as strain, stress and energy density were investigated from the Williamson- Hall (W-H) plot assuming a uniform deformation model (UDM), and uniform deformation energy density model (UDEDM). The W-H analysis shows an anisotropic nature of the strain in nanopowders. The scanning electron microscopy image shows clear TiO2 nanoparticles with particle sizes varying from 60 to 80nm. The results of mean particle size of TiO2 nanoparticles show an inter correlation with the W-H analysis and SEM results. Our X-ray photoelectron spectroscopy spectra show that nearly a complete amount of titanium has reacted to TiO2

    Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash

    Full text link
    © 2018 Techno-Press, Ltd. The importance of using materials cost effectively to enhance the strength and reduce the cost, and weight of earth fill materials in geotechnical engineering led researchers to seek for modifying the soil properties by adding proper additives. Lightweight fill materials made of soil, binder, water, and Expanded polystyrene (EPS) beads are increasingly being used in geotechnical practices. This paper primarily investigates the behavior of sandy soil, modified by EPS particles. Besides, the mechanical properties of blending sand, EPS and the binder material such as fly ash and cement were examined in different mixing ratios using a number of various laboratory studies including the Modified Standard Proctor (MSP) test, the Unconfined Compressive Strength (UCS) test, the California Bearing Ratio (CBR) test and the Direct Shear test (DST). According to the results, an increase of 0.1% of EPS results in a reduction of the density of the mixture for 10%, as well as making the mixture more ductile rather than brittle. Moreover, the compressive strength, CBR value and shear strength parameters of the mixture decreases by an increase of the EPS beads, a trend on the contrary to the increase of cement and fly ash content

    Constrained Compression Models for Tire-Derived Aggregate-Sand Mixtures Using Enhanced Large Scale Oedometer Testing Apparatus

    Full text link
    © 2018, Springer Nature Switzerland AG. Tire derived aggregates have recently been in wide use both in industry and engineering applications depending on the size and the application sought. Five different contents of tire derived aggregates (TDA) were mixed with sand thoroughly to ensure homogeneity. A series of large scale oedometer experiments were conducted to investigate the compressibility properties of the mixtures. Tire shreds content, TDA aspect ratio, skeletal relative density and overburden pressure are studied parameters. Constrained deformation modulus and coefficient of earth pressure at rest are measured parameters. All tests were conducted at seven overburden pressure levels. It was concluded that deformability of TDA-sand mixture increases with soft inclusion. Overburden pressure and skeletal relative density are also important parameters which render more rigidity and less lateral earth pressure coefficient accordingly. TDA size or aspect ratio was shown to have minor effect at least for the constrained strain conditions encountered in current study. An EPR-based parametric study and also sensitivity analyses based on cosine amplitude method revealed quantitative evaluation of the relative importance of each input parameter in varying deformation and lateral earth pressure coefficient as the outputs

    Physical and numerical modelling of the inherent variability of shear strength in soil mechanics

    Full text link
    © 2019 Techno-Press, Ltd. In this study the spatial variability of soils is substantiated physically and numerically by using random field theory. Heterogeneous samples are fabricated by combining nine homogeneous soil clusters that are assumed to be elements of an adopted random field. Homogeneous soils are prepared by mixing different percentages of kaolin and bentonite at water contents equivalent to their respective liquid limits. Comprehensive characteristic laboratory tests were carried out before embarking on direct shear experiments to deduce the basic correlations and properties of nine homogeneous soil clusters that serve to reconstitute the heterogeneous samples. The tests consist of Atterberg limits, and Oedometric and unconfined compression tests. The undrained shear strength of nine soil clusters were measured by the unconfined compression test data, and then correlations were made between the water content and the strength and stiffness of soil samples with different consistency limits. The direct shear strength of heterogeneous samples of different stochastic properties was then evaluated by physical and numerical modelling using FISH code programming in finite difference software of FLAC 3D . The results of the experimental and stochastic numerical analyses were then compared. The deviation of numerical simulations from direct shear load-displacement profiles taken from different sources were discussed, potential sources of error was introduced and elaborated. This study was primarily to explain the mathematical and physical procedures of sample preparation in stochastic soil mechanics. It can be extended to different problems and applications in geotechnical engineering discipline to take in to account the variability of strength and deformation parameters

    General failure envelope of eccentrically and obliquely loaded strip footings resting on an inherently anisotropic granular medium

    Full text link
    Soil is a cross anisotropic particulate medium with different strengths in various directions; this is primarily due to its geological deposition process and the very fact that particles always settle in their most stable positions. This study examines the influence of inherent anisotropy on the ultimate bearing capacity of eccentrically and obliquely loaded strip footings that rest on cohesionless granular soils using a two-dimensional plane strain finite element simulation in conjunction with the lower bound limit analysis method and second-order cone programming (SOCP). The inherent anisotropy, manifested in the so-called parameter of anisotropy ratio, is simulated by considering variable internal friction angles along different directions. The nonlinear form of the universal Mohr-Coulomb failure criterion is also used to optimize the lower bound formulation. The failure envelopes of shallow foundations that correspond to inclined and eccentric loadings are depicted and discussed for various anisotropy ratios of the underlying soil deposit. It is observed that the failure locus generally decreases in size as the anisotropy ratio increases. Based on the results of numerical simulations, a general equation that describes the general bearing capacity of shallow foundations resting on inherently anisotropic cohesionless granular medium subjected to combined vertical-horizontal-moment loadings is presented and discussed
    corecore