2,702 research outputs found
Stability of the Bragg glass phase in a layered geometry
We study the stability of the dislocation-free Bragg glass phase in a layered
geometry consisting of coupled parallel planes of d=1+1 vortex lines lying
within each plane, in the presence of impurity disorder. Using renormalization
group, replica variational calculations and physical arguments we show that at
temperatures the 3D Bragg glass phase is always stable for weak
disorder. It undergoes a weakly first order transition into a decoupled 2D
vortex glass upon increase of disorder.Comment: RevTeX. Submitted to EP
Evaluation of four different strategies to characterize plasma membrane proteins from banana roots
Plasma membrane proteins constitute a very important class of proteins. They are involved in the transmission of external signals to the interior of the cell and selective transport of water, nutrients and ions across the plasma membrane. However, the study of plasma membrane proteins is challenging because of their poor solubility in aqueous media and low relative abundance. In this work, we evaluated four different strategies for the characterization of plasma membrane proteins from banana roots: (i) the aqueous-polymer two-phase system technique (ATPS) coupled to gelelectrophoresis (gel-based), and (ii) ATPS coupled to LC-MS/MS (gel free), (iii) a microsomal fraction and (iv) a full proteome, both coupled to LC-MS/ MS. Our results show that the gel-based strategy is useful for protein visualization but has major limitations in terms of time reproducibility and efficiency. From the gel-free strategies, the microsomal-based strategy allowed the highest number of plasma membrane proteins to be identified, followed by the full proteome strategy and by the ATPS based strategy. The high yield of plasma membrane proteins provided by the microsomal fraction can be explained by the enrichment of membrane proteins in this fraction and the high throughput of the gel-free approach combined with the usage of a fast high-resolution mass spectrometer for the identification of proteins
Measuring overlaps in mesoscopic spin glasses via conductance fluctuations
We consider the electonic transport in a mesoscopic metallic spin glasses. We
show that the distribution of overlaps between spin configurations can be
inferred from the reduction of the conductance fluctuations by the magnetic
impurities. Using this property, we propose new experimental protocols to probe
spin glasses directly through their overlaps
Somatic embryogenesis in coffee: the evolution of biotechnology and the integration of omics technologies offer great opportunities
One of the most important crops cultivated around the world is coffee. There are two main cultivated species, Coffea arabica and C. canephora. Both species are difficult to improve through conventional breeding, taking at least 20 years to produce a new cultivar. Biotechnological tools such as genetic transformation, micropropagation and somatic embryogenesis (SE) have been extensively studied in order to provide practical results for coffee improvement. While genetic transformation got many attention in the past and is booming with the CRISPR technology, micropropagation and SE are still the major bottle neck and urgently need more attention. The methodologies to induce SE and the further development of the embryos are genotype-dependent, what leads to an almost empirical development of specific protocols for each cultivar or clone. This is a serious limitation and excludes a general comprehensive understanding of the process as a whole. The aim of this review is to provide an overview of which achievements and molecular insights have been gained in (coffee) somatic embryogenesis and encourage researchers to invest further in the in vitro technology and combine it with the latest omics techniques (genomics, transcriptomics, proteomics, metabolomics, and phenomics). We conclude that the evolution of biotechnology and the integration of omics technologies offer great opportunities to (i) optimize the production process of SE and the subsequent conversion into rooted plantlets and (ii) to screen for possible somaclonal variation. However, currently the usage of the latest biotechnology did not pass the stage beyond proof of potential and needs to further improve
Renormalization of modular invariant Coulomb gas and Sine-Gordon theories, and quantum Hall flow diagram
Using the renormalisation group (RG) we study two dimensional electromagnetic
coulomb gas and extended Sine-Gordon theories invariant under the modular group
SL(2,Z). The flow diagram is established from the scaling equations, and we
derive the critical behaviour at the various transition points of the diagram.
Following proposal for a SL(2,Z) duality between different quantum Hall fluids,
we discuss the analogy between this flow and the global quantum Hall phase
diagram.Comment: 10 pages, 1 EPS figure include
A phenomenological theory giving the full statistics of the position of fluctuating pulled fronts
We propose a phenomenological description for the effect of a weak noise on
the position of a front described by the Fisher-Kolmogorov-Petrovsky-Piscounov
equation or any other travelling wave equation in the same class. Our scenario
is based on four hypotheses on the relevant mechanism for the diffusion of the
front. Our parameter-free analytical predictions for the velocity of the front,
its diffusion constant and higher cumulants of its position agree with
numerical simulations.Comment: 10 pages, 3 figure
Glass phases of flux lattices in layered superconductors
We study a flux lattice which is parallel to superconducting layers, allowing
for dislocations and for disorder of both short wavelength and long wavelength.
We find that the long wavelength disorder has a significant effect on the phase
diagram -- it produces a first order transition within the Bragg glass phase
and leads to melting at strong disorder. This then allows a Friedel scenario of
2D superconductivity.Comment: 5 pages, 1 eps figure, Revte
Absence of Two-Dimensional Bragg Glasses
The stability to dislocations of the elastic phase, or ``Bragg glass'', of a
randomly pinned elastic medium in two dimensions is studied using the
minimum-cost-flow algorithm for a disordered fully-packed loop model. The
elastic phase is found to be unstable to dislocations due to the quenched
disorder. The energetics of dislocations are discussed within the framework of
renormalization group predictions as well as in terms of a domain wall picture.Comment: 5 pages, REVTEX, 3 figures included. Further information can be
obtained from [email protected]
Elucidation of the compatible interaction between banana and Meloidogyne incognita via high-throughput proteome profiling
With a diverse host range, Meloidogyne incognita (root-knot nematode) is listed as one of the most economically important obligate parasites of agriculture. This nematode species establishes permanent feeding sites in plant root systems soon after infestation. A compatible host-nematode interaction triggers a cascade of morphological and physiological process disruptions of the host, leading to pathogenesis. Such disruption is reflected by altered gene expression in affected cells, detectable using molecular approaches. We employed a high-throughput proteomics approach to elucidate the events involved in a compatible banana- M. incognita interaction. This study serves as the first crucial step in developing natural banana resistance for the purpose of biological-based nematode management programme. We successfully profiled 114 Grand naine root proteins involved in the interaction with M. incognita at the 30th- and 60th- day after inoculation (dai). The abundance of proteins involved in fundamental biological processes, cellular component organisation and stress responses were significantly altered in inoculated root samples. In addition, the abundance of proteins in pathways associated with defence and giant cell maintenance in plants such as phenylpropanoid biosynthesis, glycolysis and citrate cycle were also implicated by the infestation
- …
