8,215 research outputs found

    Experimental evaluation of resistojet thruster plume shields

    Get PDF
    The exhaust of an engineering model resistojet has been investigated using rotary pitot probes and a rotary quartz crystal microbalance. The resistojet operated on CO2 propellant at a mass flow rate of 0.29 g/sec in both heated and unheated flows. Measurements of local flow angles in the near field of a conical plume shield indicated that the shield was not wholly effective in confining the flow to the region upstream of its exit plane. However, the absolute levels of the measured mass flux into the backflow region were very low, on the order of 7 x 10 to the -7 power g/sqcm/sec or less. The use of a circualr disk at the exit plane of the existing conical shield showed some benefit in decreasing the amount of backflow by a factor of two. Lastly, a detached shield placed upstream of the resistojet exit plane demonstrated a small degree of local shielding for the region directly behind it

    Hearing Conservation Program For Marching Band Members: A Risk For Noise-Induced Hearing Loss?

    Get PDF
    Purpose: To examine the risk for noise-induced hearing loss (NIHL) in university marching band members and to provide an overview of a hearing conservation program for a marching band. Method: Sound levels during band rehearsals were recorded and audiometric hearing thresholds and transient otoacoustic emission were measured over a 3-year period. Musician's earplugs and information about hearing loss were provided to the students. The hearing thresholds of other college students were tested as a partial control. Results: There were no significant differences in hearing thresholds between the two groups. During initial testing, more marching band members showed apparent high-frequency notches than control students. Follow-up hearing tests in a subsequent year for the marching band members showed that almost all notches disappeared. Persistent standard threshold shift (STS) across tests was not observed in the band members. Conclusion: Band members showed no evidence of STS or persistent notched audiograms. Because accepted procedures for measuring hearing showed a lack of precision in reliably detecting early NIHL in marching band members, it is recommended that signs of NIHL be sought in repeated measurements compared to baseline audiograms rather than in a single measure (a single notch). A hearing conservation program for this population is still recommended because of lengthy rehearsal times with high sound-level exposure during rehearsals.Communication Sciences and Disorder

    UV observations of blue stragglers and population 2 K dwarfs

    Get PDF
    Blue stragglers are stars, found usually in either open or globular clusters, that appear to lie on the main sequence, but are brighter and bluer than the cluster turn-off. Currently, two rival models are invoked to explain this apparently pathological behavior: internal mixing (so that fresh fuel is brought into the stellar core); and mass transfer (by which a normal main sequence star acquires mass from an evolving nearby companion and so moves up the main sequence). The latter model predicts that in the absence of complete mass transfer (i.e., coalescence), blue stragglers should be binary systems with the fainter star in a post-main sequence evolutionary state. It is important to ascertain the cause of this phenomenon since stellar evolution models of main sequence stars play such a vital role in astronomy. If mass transfer is involved, one may easily exclude binaries from age determinations of clusters, but if mixing is the cause, our age determinations will be much less accurate unless we can determine whether all stars or only some mix, and what causes the mixing to occur at all

    Rotation and Macroturbulence in Metal-poor Field Red Giant and Red Horizontal Branch Stars

    Get PDF
    We report the results for rotational velocities, Vrot sin i, and macroturbulence dispersion, zeta(RT), for 12 metal-poor field red giant branch stars and 7 metal-poor field red horizontal branch stars. The results are based on Fourier transform analyses of absorption line profiles from high-resolution (R ~ 120,000), high-S/N (~ 215 per pixel) spectra obtained with the Gecko spectrograph at CFHT. We find that the zeta(RT) values for the metal-poor RGB stars are very similar to those for metal-rich disk giants studied earlier by Gray and his collaborators. Six of the RGB stars have small rotational values, less than 2.0 km/sec, while five show significant rotation, over 3 km/sec. The fraction of rapidly rotating RHB stars is somewhat lower than found among BHB stars. We devise two empirical methods to translate the line-broadening results obtained by Carney et al. (2003, 2008) into Vrot sin i for all the RGB and RHB stars they studied. Binning the RGB stars by luminosity, we find that most metal-poor field RGB stars show no detectable sign, on average, of rotation. However, the most luminous stars, with M(V) <= -1.5, do show net rotation, with mean values of 2 to 4 km/sec, depending on the algorithm employed, and these stars also show signs of radial velocity jitter and mass loss.Comment: accepted for publication in the Astronomical Journa

    Particle Dark Energy

    Full text link
    We explore the physics of a gas of particles interacting with a condensate that spontaneously breaks Lorentz invariance. The equation of state of this gas varies from 1/3 to less than -1 and can lead to the observed cosmic acceleration. The particles are always stable. In our particular class of models these particles are fermions with a chiral coupling to the condensate. They may behave as relativistic matter at early times, produce a brief period where they dominate the expansion with w<0 today, and behave as matter at late time. There are no small parameters in our models, which generically lead to dark energy clustering and, depending on the choice of parameters, smoothing of small scale power.Comment: 8 pages, 5 figures; minor update with added refs; version appearing in Phys. Rev.

    Kinematics of Nearby Subdwarf Stars

    Full text link
    We present an analysis of the space motions of 742 subdwarf stars based on the sample of Carney et al. (1994, CLLA). Hipparcos parallaxes, TYC2+HIP proper motions and Tycho2 proper motions were combined with radial velocities and metallicities from CLLA. The kinematical behavior is discussed in particular in relation to their metallicities. The majority of these sample stars have metal abundances of [Fe/H] >-1 and represent the thick disk population. The halo component, with [Fe/H] <-1.6, is characterized by a low mean rotation velocity and a radially elongated velocity ellipsoid. In the intermediate metallicity range (-1.6 < [Fe/H] <-1), we find a significant number of subdwarfs with disklike kinematics. We interpret this population of stars as a metal-weak thick disk population.Comment: 6 pages, 7 figures, accepted by Astronomy & Astrophysic

    Synthetic Mudscapes: Human Interventions in Deltaic Land Building

    Get PDF
    In order to defend infrastructure, economy, and settlement in Southeast Louisiana, we must construct new land to mitigate increasing risk. Links between urban environments and economic drivers have constrained the dynamic delta landscape for generations, now threatening to undermine the ecological fitness of the entire region. Static methods of measuring, controlling, and valuing land fail in an environment that is constantly in flux; change and indeterminacy are denied by traditional inhabitation. Multiple land building practices reintroduce deltaic fluctuation and strategic deposition of fertile material to form the foundations of a multi-layered defence strategy. Manufactured marshlands reduce exposure to storm surge further inland. Virtual monitoring and communication networks inform design decisions and land use becomes determined by its ecological health. Mudscapes at the threshold of land and water place new value on former wastelands. The social, economic, and ecological evolution of the region are defended by an expanded web of growing land

    Automating the Surveillance of Mosquito Vectors from Trapped Specimens Using Computer Vision Techniques

    Full text link
    Among all animals, mosquitoes are responsible for the most deaths worldwide. Interestingly, not all types of mosquitoes spread diseases, but rather, a select few alone are competent enough to do so. In the case of any disease outbreak, an important first step is surveillance of vectors (i.e., those mosquitoes capable of spreading diseases). To do this today, public health workers lay several mosquito traps in the area of interest. Hundreds of mosquitoes will get trapped. Naturally, among these hundreds, taxonomists have to identify only the vectors to gauge their density. This process today is manual, requires complex expertise/ training, and is based on visual inspection of each trapped specimen under a microscope. It is long, stressful and self-limiting. This paper presents an innovative solution to this problem. Our technique assumes the presence of an embedded camera (similar to those in smart-phones) that can take pictures of trapped mosquitoes. Our techniques proposed here will then process these images to automatically classify the genus and species type. Our CNN model based on Inception-ResNet V2 and Transfer Learning yielded an overall accuracy of 80% in classifying mosquitoes when trained on 25,867 images of 250 trapped mosquito vector specimens captured via many smart-phone cameras. In particular, the accuracy of our model in classifying Aedes aegypti and Anopheles stephensi mosquitoes (both of which are deadly vectors) is amongst the highest. We present important lessons learned and practical impact of our techniques towards the end of the paper
    corecore