23 research outputs found
Effect of aqueous extract of Tinospora cordifolia on functions of peritoneal macrophages isolated from CCl4 intoxicated male albino mice
<p>Abstract</p> <p>Background</p> <p>The current practice of ingesting phytochemicals for supporting the immune system or fighting infections is based on centuries-old tradition. Macrophages are involved at all the stages of an immune response. The present study focuses on the immunostimulant properties of <it>Tinospora cordifolia </it>extract that are exerted on circulating macrophages isolated from CCl<sub>4 </sub>(0.5 ml/kg body weight) intoxicated male albino mice.</p> <p>Methods</p> <p>Apart from damaging the liver system, carbon tetrachloride also inhibits macrophage functions thus, creating an immunocompromised state, as is evident from the present study. Such cell functions include cell morphology, adhesion property, phagocytosis, enzyme release (myeloperoxidase or MPO), nitric oxide (NO) release, intracellular survival of ingested bacteria and DNA fragmentation in peritoneal macrophages isolated from these immunocompromised mice. <it>T. cordifolia </it>extract was tested for acute toxicity at the given dose (150 mg/kg body weight) by lactate dehydrogenase (LDH) assay.</p> <p>Results</p> <p>The number of morphologically altered macrophages was increased in mice exposed to CCl<sub>4</sub>. Administration of CCl<sub>4 </sub>(i.p.) also reduced the phagocytosis, cell adhesion, MPO release, NO release properties of circulating macrophages of mice. The DNA fragmentation of peritoneal macrophages was observed to be higher in CCl<sub>4 </sub>intoxicated mice. The bacterial killing capacity of peritoneal macrophages was also adversely affected by CCl<sub>4. </sub>However oral administration of aqueous fraction of <it>Tinospora cordifolia </it>stem parts at a dose of 40 mg/kg body weight (<it>in vivo</it>) in CCl<sub>4 </sub>exposed mice ameliorated the effect of CCl<sub>4</sub>, as the percentage of morphologically altered macrophages, phagocytosis activity, cell adhesion, MPO release, NO release, DNA fragmentation and intracellular killing capacity of CCl<sub>4 </sub>intoxicated peritoneal macrophages came closer to those of the control group. No acute toxicity was identified in oral administration of the aqueous extract of <it>Tinospora cordifolia </it>at a dose of 150 mg/kg body weight.</p> <p>Conclusion</p> <p>From our findings it can be suggested that, polar fractions of <it>Tinospora cordifolia </it>stem parts contain major bioactive compounds, which directly act on peritoneal macrophages and have been found to boost the non-specific host defenses of the immune system. However, the molecular mechanism of this activity of <it>Tinospora cordifolia </it>on immune functions needs to be elucidated.</p
Rubia cordifolia, Fagonia cretica linn and Tinospora cordifolia exert neuroprotection by modulating the antioxidant system in rat hippocampal slices subjected to oxygen glucose deprivation
BACKGROUND: The major damaging factor during and after the ischemic/hypoxic insult is the generation of free radicals, which leads to apoptosis, necrosis and ultimately cell death. Rubia cordifolia (RC), Fagonia cretica linn (FC) and Tinospora cordifolia (TC) have been reported to contain a wide variety of antioxidants and have been in use in the eastern system of medicine for various disorders. However, their mechanism of action was largely unknown. We therefore selected these herbs for the present study to test their neuroprotective ability and the associated mechanism in rat hippocampal slices subjected to oxygen-glucose deprivation (OGD). METHODS: Hippocampal Slices were subjected to OGD (oxygen glucose deprivation) and divided into 3 groups: control, OGD and OGD + drug treated. Cytosolic Cu-Zn superoxide dismutase (Cu-Zn SOD), reduced glutathione (GSH), glutathione peroxidase (GPx), nitric oxide (NO) was measured as nitrite (NO(2)) in the supernatant and protein assays were performed in the respective groups at various time intervals. EPR was used to establish the antioxidant effect of RC, FC and TC with respect to superoxide anion (O(2)(.-)), hydroxyl radicals ((. )OH), nitric oxide (NO) radical and peroxynitrite anion (ONOO) generated from pyrogallol, menadione, DETA-NO and Sin-1 respectively. RT-PCR was performed for the three groups for GCLC, iNOS, Cu-Zn SOD and GAPDH gene expression. RESULTS: All the three herbs were effective in elevating the GSH levels, expression of the gamma-glutamylcysteine ligase and Cu-Zn SOD genes. The herbs also exhibited strong free radical scavenging properties against reactive oxygen and nitrogen species as studied by electron paramagnetic resonance spectroscopy. In addition all the three herbs significantly diminished the expression of iNOS gene after 48 hours which plays a major role in neuronal injury during hypoxia/ischemia. CONCLUSIONS: RC, FC and TC therefore attenuate oxidative stress mediated cell injury during OGD and exert the above effects at both the cytosolic as well as at gene expression level and may be an effective therapeutic tool against ischemic brain damage
Killing of Staphylococcus aureus in murine macrophages by chloroquine used alone and in combination with ciprofloxacin or azithromycin
Somrita Dey, Biswadev BishayiDepartment of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, IndiaAbstract: This study aimed to determine any alteration in the killing of Staphylococcus aureus in murine peritoneal macrophages when chloroquine (CQ) is used alone compared with when it is used in combination with ciprofloxacin (CIP) or azithromycin (AZM). The study also aimed to find out the implication of reactive oxygen species (ROS) production and cytokine release in the intracellular killing of S. aureus in macrophages. We present here data obtained with a model of S. aureus-infected mouse peritoneal macrophages in which the intracellular growth of the bacteria and the influence of antibiotics was monitored for 30, 60, and 90 minutes in the presence or absence of CQ along with the production of ROS and alteration in levels of antioxidant enzymes and cytokines. It was observed that S. aureus-triggered cytokine response was regulated when macrophages were co-cultured with CQ and AZM as compared with CQ stimulation only. It can be suggested that action of AZM in mediating bacterial killing is enhanced by the presence of CQ, indicating enhanced uptake of AZM during early infection that may be essential for bacteria killing by AZM. Reduction of oxidative stress burden on the S. aureus-infected macrophages may pave the way for better killing of internalized S. aureus by CQ plus ciprofloxacin (CIP) or CQ plus AZM. Based on these observations, one may speculate that in an inflammatory milieu, CQ loaded with AZM elicits a stronger proinflammatory response by increasing the intracellular uptake of AZM or CIP, thus enabling the immune system to mount a more robust and prolonged response against intracellular pathogens.Keywords: azithromycin, ciprofloxacin, intracellular surviva
Lead induced modulation of splenic macrophage responses on humoral and cell mediated immunity
The heavy metal lead is an environmental toxic material that can induce pathophysiological changes in many organ systems. Previous studies have shown the effects of lead exposure on immune cells in different experimental animals, however, the mechanism of their influence on the immune system is unclear. We reported that in vivo lead exposure inhibits phagocytosis, nitric oxide release, induces DNA fragmentation suggesting the apoptotic death of the target cell. We have also presented evidence that inhibition of macrophage functional responses implicated alteration of humoral and cell mediated immunity. In vivo exposure to lead acetate alters the phagocytic capacity of splenic macrophages as evident from the reduction of phagocytic index of control from 19,792±1385.69 to 8893 ± 893 in the treated group. The amount of nitric oxide released by the control cell 2.25 ± 0.125 µM is also reduced to 1.9375 ± 0.0625 µM upon in vivo lead treatment. Functional integrity of the target cell is also decreased after lead exposure as obtained from the percentage of DNA fragmentation. Control group shows 33.29 ± 0.11% of fragmented DNA, which is enhanced to 42.43 ± 0.725% following the lead treatment. A greater percentage of DNA fragmentation upon lead treatment probably indicating that the heavy metal induces apoptosis. The humoral immune response is also altered after lead exposure as indicated by the decrease of the antibody titre in control group from 1:2048 to1:128 in the treated group. From the DTH reaction, it was observed that the mean diameter of swollen foot pad of control mice is 0.329 ± 0.15 cm and that of lead treated mice is 0.274 ± 0.056 cm. It can, therefore, be suggested that lead inhibits normal functional activities of splenic leukocytes, particularly phagocytosis and also affects the functional integrity of cells by inducing DNA fragmentation. The study may demonstrate the usefulness of investigation of humoral immune system and leukocyte functions as sensitive parameters in detecting the effects of lead toxicity
Effect of adrenalectomy on rat peritoneal macrophage response
Glucocorticoid hormones are important for vital functions and act to modulate inflammatory and immune responses. In contrast to other hormonal systems no endogenous mediators have been identified that can directly counter-regulate their potent anti-inflammatory and immunosuppressive properties. Glucocorticoids are known to interfere with the ability of the macrophage not only to induce and amplify an immune response but also to inhibit macrophage inflammatory effector functions. Although the actual immunocompetence of animals undergoing endocrine gland ectomy has never been directly studied, there is no doubt that adrenal hormones are deeply involved in the development and maintenance of the immunitory functions and this may in turn influence the inflammatory reaction. To study the effect of endogenous glucocorticoids on the functions of rat peritoneal macrophages and induction of humoral immune response we observed some of the rat peritoneal macrophage effector functions, provided that endogenous glucocorticoids are depleted by adrenalectomy. The mean phagocytic index (PI) of control macrophage (Mf) is increased from 23,825±427 to 31,895±83 after adrenalectomy (P£0.001). Intracellular killing capacity in control cell is 82% which is found to be 73% in case of adrenalectomised cell (p<0.05). The amount of nitric oxide released from control Mf 20.25±1 mM following adrenalectomy shows the amount of nitric oxide release was 18.25 mM (p£0.01). The percentage of DNA fragmentation in control Mf was 68.82±4 which was reduced to 56.76±1 after adrenalectomy (p£0.01). In sheep red blood cell (SRBC) immunised and adrenalectomised animal, agglutination titre was obtained at lowest antibody concentration (1:128) whereas serum from SRBC immunised normal rats showed early agglutination (1:32). Endogenous glucocorticoid depleted rats show enhanced phagocytic capacity, antibody raising capacity as well as on the other hand adrenal hormone insufficiency reduces the intracellular killing capacity, nitric oxide (NO) release, improper cell maturation and heightens the probability of infection. These observations demonstrate a counter-regulatory system via glucocorticoid that functions to control inflammatory and immune responses