31 research outputs found

    Plutonium, 90Sr and 241Am in human bones from southern and northeastern parts of Poland

    Get PDF
    The paper presents the results of our study on 238Pu, 239Pu, 240Pu, 241Am and 90Sr concentration in human bones carried out on a set of 88 individual samples of central Europe origin. Bone tissue samples were retrieved under surgery while introducing hip joint implants. The conducted surgeries tend to cover either southern or northeastern parts of Poland. While for the southern samples only global fallout was expected to be seen, a mixed global and Chernobyl fallout were to be reflected in the others. Alpha spectrometry was applied to obtain activity concentration for 238Pu, 239?240Pu, 241Am, while liquid scintillation spectrometry for 90Sr and mass spectrometry to receive 240Pu/239Pu mass ratio. Surprisingly enough, and to the contrary to our expectations we could not see any significant differences in either Pu activity or Pu mass ratio between the studied populations. In both populations Chernobyl fraction proved marginal. The results on 90Sr and 241Am confirm similarities between the two examined groups

    Rhyolite magma evolution recorded in isotope and trace element composition of zircon from Halle Volcanic Complex

    No full text
    Voluminous felsic volcanic magmas were formed in Central Europe at the Carboniferous/Permian boundary in numerous pull-apart basins; one of which is the Saale Basin, which holds the Halle Volcanic Complex (HVC), the focus of this study. The rhyolites in the HVC formed laccoliths and scarce lavas, and occur in two different textural types: fine and coarse porphyritic. Zircon isotope and trace element composition was analysed in four units, two per each textural type. Zircon from the different units shows similar ranges in εHf (− 4.1 to − 8.1) and δ18O values (6.51–8.26), indicating similar sources and evolution processes for texturally diverse rhyolites from the HVC. Scarce inherited zircon ranges from ~ 315 Ma to ~ 2100 Ma with the major groupings around 315–550 Ma. These ages are typical for Devonian arc magmatic activity (350–400 Ma) and Cadomian igneous rocks (500–600 Ma), which occur in the basement presently underlying the HVC. Therefore, the source of the rhyolites was multicomponent and probably represented by a basement composed of various crystalline rocks. Trace elements in zircon show similar distributions in all analysed samples, which is broadly consistent with zircon cores crystallizing in a less evolved magma undergoing limited fractional crystallization, whilst the zircon rims crystallized from a magma undergoing extensive fractional crystallization of major and accessory minerals. Interestingly, comparison of the zircon composition in HVC rhyolites and other rhyolites worldwide shows that the observed trends are similar in such rhyolites despite the values being different. This may suggest that most of the zircon in rhyolites crystallizes at a similar stage in the rhyolite magma evolution, from magmas undergoing extensive crystallization of major phases and apatite. The implication is that most of the zircon represents late stage crystallization, but also that antecrystic component may be present and preserve information on the development of precursor magmas, probably within mush-rich magma bodies
    corecore