1,984 research outputs found
Detection of topological transitions by transport through molecules and nanodevices
We analyze the phase transitions of an interacting electronic system weakly
coupled to free-electron leads by considering its zero-bias conductance. This
is expressed in terms of two effective impurity models for the cases with and
without spin degeneracy. We demonstrate using the half-filled ionic Hubbard
ring that the weight of the first conductance peak as a function of external
flux or of the difference in gate voltages between even and odd sites allows
one to identify the topological charge transition between a correlated
insulator and a band insulator.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let
A scalable optical detection scheme for matter wave interferometry
Imaging of surface adsorbed molecules is investigated as a novel detection
method for matter wave interferometry with fluorescent particles. Mechanically
magnified fluorescence imaging turns out to be an excellent tool for recording
quantum interference patterns. It has a good sensitivity and yields patterns of
high visibility. The spatial resolution of this technique is only determined by
the Talbot gratings and can exceed the optical resolution limit by an order of
magnitude. A unique advantage of this approach is its scalability: for certain
classes of nano-sized objects, the detection sensitivity will even increase
significantly with increasing size of the particle.Comment: 10 pages, 4 figure
Faraday Rotation Spectroscopy of Quantum-Dot Quantum Wells
Time-resolved Faraday rotation studies of CdS/CdSe/CdS quantum-dot quantum
wells have recently shown that the Faraday rotation angle exhibits several
well-defined resonances as a function of probe energy close to the absorption
edge. Here, we calculate the Faraday rotation angle from the eigenstates of the
quantum-dot quantum well obtained with k.p theory. We show that the large
number of narrow resonances with comparable spectral weight observed in
experiment is not reproduced by the level scheme of a quantum-dot quantum well
with perfect spherical symmetry. A simple model for broken spherical symmetry
yields results in better qualitative agreement with experiment.Comment: 9 pages, 4 figure
Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals
We introduce a new, highly sensitive, and simple heterodyne optical method
for imaging individual nonfluorescent nanoclusters and nanocrystals. A 2 order
of magnitude improvement of the signal is achieved compared to previous
methods. This allows for the unprecedented detection of individual small
absorptive objects such as metallic clusters (of 67 atoms) or nonluminescent
semiconductor nanocrystals. The measured signals are in agreement with a
calculation based on the scattering field theory from a photothermal-induced
modulated index of refraction profile around the nanoparticle
New Mechanism for Electronic Energy Relaxation in Nanocrystals
The low-frequency vibrational spectrum of an isolated nanometer-scale solid
differs dramatically from that of a bulk crystal, causing the decay of a
localized electronic state by phonon emission to be inhibited. We show,
however, that an electron can also interact with the rigid translational motion
of a nanocrystal. The form of the coupling is dictated by the equivalence
principle and is independent of the ordinary electron-phonon interaction. We
calculate the rate of nonradiative energy relaxation provided by this mechanism
and establish its experimental observability.Comment: 4 pages, Submitted to Physical Review
Density functional study of Au (n=2-20) clusters: lowest-energy structures and electronic properties
We have investigated the lowest-energy structures and electronic properties
of the Au(n=2-20) clusters based on density functional theory (DFT) with
local density approximation. The small Au clusters adopt planar structures
up to n=6. Tabular cage structures are preferred in the range of n=10-14 and a
structural transition from tabular cage-like structure to compact
near-spherical structure is found around n=15. The most stable configurations
obtained for Au and Au clusters are amorphous instead of
icosahedral or fcc-like, while the electronic density of states sensitively
depend on the cluster geometry. Dramatic odd-even alternative behaviors are
obtained in the relative stability, HOMO-LUMO gaps and ionization potentials of
gold clusters. The size evolution of electronic properties is discussed and the
theoretical ionization potentials of Au clusters compare well with
experiments.Comment: 6 pages, 7 figure
Oscillatory Shear Flow-Induced Alignment of Lamellar Melts of Hydrogen-Bonded Comb Copolymer Supramolecules
In this work we present the orientational behavior of comb copolymer-like supramolecules P4VP(PDP)1.0, obtained by hydrogen bonding between poly(4-vinylpyridine) and pentadecylphenol, during large-amplitude oscillatory shear flow experiments over a broad range of frequencies (0.001-10 Hz). The alignment diagram, presenting the macroscopic alignment in T/TODT vs ω/ωc, contains three regions of parallel alignment separated by a region of perpendicular alignment. For our material, the order-disorder temperature TODT = 67 °C and ωc, the frequency above which the distortion of the chain conformation dominates the materials’ viscoelasticity, is around 0.1 Hz at 61 °C. For the first time flipping from a pure transverse alignment via biaxial transverse/perpendicular alignment to a perpendicular alignment as a function of the strain amplitude was found.
Effect of the Surface on the Electron Quantum Size Levels and Electron g-Factor in Spherical Semiconductor Nanocrystals
The structure of the electron quantum size levels in spherical nanocrystals
is studied in the framework of an eight--band effective mass model at zero and
weak magnetic fields. The effect of the nanocrystal surface is modeled through
the boundary condition imposed on the envelope wave function at the surface. We
show that the spin--orbit splitting of the valence band leads to the
surface--induced spin--orbit splitting of the excited conduction band states
and to the additional surface--induced magnetic moment for electrons in bare
nanocrystals. This additional magnetic moment manifests itself in a nonzero
surface contribution to the linear Zeeman splitting of all quantum size energy
levels including the ground 1S electron state. The fitting of the size
dependence of the ground state electron g factor in CdSe nanocrystals has
allowed us to determine the appropriate surface parameter of the boundary
conditions. The structure of the excited electron states is considered in the
limits of weak and strong magnetic fields.Comment: 11 pages, 4 figures, submitted to Phys. Rev.
Testing the solar LMA region with KamLAND data
We investigate the potential of 3 kiloTon-years(kTy) of KamLAND data to
further constrain the and values compared to those
presently allowed by existing KamLAND and global solar data. We study the
extent, dependence and characteristics of this sensitivity in and around the
two parts of the LMA region that are currently allowed. Our analysis with 3 kTy
simulated spectra shows that KamLAND spectrum data by itself can constrain
with high precision. Combining the spectrum with global solar data
further tightens the constraints on allowed values of and
. We also study the effects of future neutral current data with a
total error of 7% from the Sudbury Neutrino Observatory. We find that these
future measurements offer the potential of considerable precision in
determining the oscillation parameters (specially the mass parameter).Comment: 16 pages, to appear in J Phys.
Self-directed growth of AlGaAs core-shell nanowires for visible light applications
Al(0.37)Ga(0.63)As nanowires (NWs) were grown in a molecular beam epitaxy
system on GaAs(111)B substrates. Micro-photoluminescence measurements and
energy dispersive X-ray spectroscopy indicated a core-shell structure and Al
composition gradient along the NW axis, producing a potential minimum for
carrier confinement. The core-shell structure formed during the growth as a
consequence of the different Al and Ga adatom diffusion lengths.Comment: 20 pages, 7 figure
- …
