51 research outputs found
Structured models of cell migration incorporating molecular binding processes
The dynamic interplay between collective cell movement and the various
molecules involved in the accompanying cell signalling mechanisms plays a
crucial role in many biological processes including normal tissue development
and pathological scenarios such as wound healing and cancer. Information about
the various structures embedded within these processes allows a detailed
exploration of the binding of molecular species to cell-surface receptors
within the evolving cell population. In this paper we establish a general
spatio-temporal-structural framework that enables the description of molecular
binding to cell membranes coupled with the cell population dynamics. We first
provide a general theoretical description for this approach and then illustrate
it with two examples arising from cancer invasion
A mathematical model of HIV-1 infection including the saturation effect of healthy cell proliferation
In this paper we derive a model describing the dynamics of HIV-1 infection in tissue culture where the infection spreads directly from infected cells to healthy cells trough cell-to-cell contact. We assume that the infection rate between healthy and infected cells is a saturating function of cell concentration. Our analysis shows that if the basic reproduction number does not exceed unity then infected cells are cleared and the disease dies out. Otherwise, the infection is persistent with the existence of an infected equilibrium. Numerical simulations indicate that, depending on the fraction of cells surviving the incubation period, the solutions approach either an infected steady state or a periodic orbit
Optimal Screening in Structured SIR Epidemics
We present a model for describing the spread of an infectious disease with public
screening measures to control the spread. We want to address the problem of determining an
optimal screening strategy for a disease characterized by appreciable duration of the
infectiveness period and by variability of the transmission risk. The specific disease we
have in mind is the HIV infection. However the model will apply to a disease for which
class-age structure is significant and should not be disregarded
Large-time behavior of matured population in an age-structured model
International audienc
An adaptative model for a multistage structured population under fluctuating environment
International audienc
Null Controllability of a Nonlinear Population Dynamics with Age Structuring and Spatial Diffusion
- …
