3,353 research outputs found
Reflection of light and heavy holes from a linear potential barrier
In this paper we study reflection of holes in direct-band semiconductors from
the linear potential barrier. It is shown that light-heavy hole transformation
matrix is universal. It depends only on a dimensionless product of the light
hole longitudinal momentum and the characteristic length determined by the
slope of the potential and doesn't depend on the ratio of light and heavy hole
masses, provided this ratio is small. It is shown that the transformation
coefficient goes to zero both in the limit of small and large longitudinal
momenta, however the phase of a reflected hole is different in these limits. An
approximate analytical expression for the light-heavy hole transformation
coefficient is found.Comment: 6 pages, 2 figure
Quadratic response theory for spin-orbit coupling in semiconductor heterostructures
This paper examines the properties of the self-energy operator in
lattice-matched semiconductor heterostructures, focusing on nonanalytic
behavior at small values of the crystal momentum, which gives rise to
long-range Coulomb potentials. A nonlinear response theory is developed for
nonlocal spin-dependent perturbing potentials. The ionic pseudopotential of the
heterostructure is treated as a perturbation of a bulk reference crystal, and
the self-energy is derived to second order in the perturbation. If spin-orbit
coupling is neglected outside the atomic cores, the problem can be analyzed as
if the perturbation were a local spin scalar, since the nonlocal spin-dependent
part of the pseudopotential merely renormalizes the results obtained from a
local perturbation. The spin-dependent terms in the self-energy therefore fall
into two classes: short-range potentials that are analytic in momentum space,
and long-range nonanalytic terms that arise from the screened Coulomb potential
multiplied by a spin-dependent vertex function. For an insulator at zero
temperature, it is shown that the electronic charge induced by a given
perturbation is exactly linearly proportional to the charge of the perturbing
potential. These results are used in a subsequent paper to develop a
first-principles effective-mass theory with generalized Rashba spin-orbit
coupling.Comment: 20 pages, no figures, RevTeX4; v2: final published versio
Long-distance remote comparison of ultrastable optical frequencies with 1e-15 instability in fractions of a second
We demonstrate a fully optical, long-distance remote comparison of
independent ultrastable optical frequencies reaching a short term stability
that is superior to any reported remote comparison of optical frequencies. We
use two ultrastable lasers, which are separated by a geographical distance of
more than 50 km, and compare them via a 73 km long phase-stabilized fiber in a
commercial telecommunication network. The remote characterization spans more
than one optical octave and reaches a fractional frequency instability between
the independent ultrastable laser systems of 3e-15 in 0.1 s. The achieved
performance at 100 ms represents an improvement by one order of magnitude to
any previously reported remote comparison of optical frequencies and enables
future remote dissemination of the stability of 100 mHz linewidth lasers within
seconds.Comment: 7 pages, 4 figure
First-principles envelope-function theory for lattice-matched semiconductor heterostructures
In this paper a multi-band envelope-function Hamiltonian for lattice-matched
semiconductor heterostructures is derived from first-principles norm-conserving
pseudopotentials. The theory is applicable to isovalent or heterovalent
heterostructures with macroscopically neutral interfaces and no spontaneous
bulk polarization. The key assumption -- proved in earlier numerical studies --
is that the heterostructure can be treated as a weak perturbation with respect
to some periodic reference crystal, with the nonlinear response small in
comparison to the linear response. Quadratic response theory is then used in
conjunction with k.p perturbation theory to develop a multi-band effective-mass
Hamiltonian (for slowly varying envelope functions) in which all interface
band-mixing effects are determined by the linear response. To within terms of
the same order as the position dependence of the effective mass, the quadratic
response contributes only a bulk band offset term and an interface dipole term,
both of which are diagonal in the effective-mass Hamiltonian. Long-range
multipole Coulomb fields arise in quantum wires or dots, but have no
qualitative effect in two-dimensional systems beyond a dipole contribution to
the band offsets.Comment: 25 pages, no figures, RevTeX4; v3: final published versio
Electrical and Crystallographic Characterization of CdTe Grown by the Vapor Transport Method
Crystallographic and electrical characterization techniques were performed on CdTe single crystal samples grown by the sublimation and physical vapor transport (SPVT) technique. The SPVT growth process described here has resulted in the routine growth of 45-50 mm diameter, 250-300 g boules of single crystal CdTe. As-grown material is p-type in the 5-10 ω cm range. Etch pit densities (EPD) are nominally 7x104 cm-2 along the [111] growth direction and 3x104 cm-2 along the [111] direction. X-ray full width at half maximum (FWHM) on recent samples is 8.6 arc sec compared to 8.5 arc sec theoretical. The as-grown p-type material displays room temperature mobility in the 80-90 cm2 V-1 s-1 range and displays acceptor levels due to Cd vacancies 0.045 eV above the valence band and due to Cd vacancy-donor complexes 0.16 eV above the valence band. The boules are a constant diameter over most of their length (∼5.5 cm) and generally display no visual or X-ray detectable twins or grain boundaries. © 1994
High intensity exercise decreases IP6K1 muscle content & improves insulin sensitivity in glucose intolerant individuals
Context
Insulin resistance in skeletal muscle contributes to whole body hyperglycaemia and the secondary complications associated with type 2 diabetes. Inositol hexakisphosphate kinase-1 (IP6K1) may inhibit insulin-stimulated glucose transport in this tissue type.
Objective
Muscle and plasma IP6K1 were correlated with two-compartment models of glucose control in insulin-resistant hyperinsulimic individuals. Muscle IP6K1 was also compared following two different exercise trials.
Methods
Nine pre-diabetic [HbA1c; 6.1 (0.2) %)] were recruited to take part in a resting control, a continuous exercise (90% of lactate threshold) and a high-intensity exercise trial (6 x 30 sec sprints). Muscle biopsies were drawn pre- and post each 60-minute trial. A labeled ([6,62H2]glucose) intravenous glucose tolerance test (IVGTT) was performed immediately after the second muscle sample.
Results
Fasting muscle IP6K1 content did not correlate with SI2* (P = 0.961). High-intensity exercise reduced IP6K1 muscle protein and mRNA expression (P = 0.001). There was no effect on protein IP6K1 content following continuous exercise. Akt308 phosphorylation of was significantly greater following high-intensity exercise. Intermittent exercise reduced hepatic glucose production (HGP) following the same trial. The same intervention also improved SI2* and this was significantly greater compared to the continuous exercise improvements. Our in vitro experiment demonstrated that the chemical inhibition of IP6K1 increased insulin signaling in C2C12 myotubes.
Conclusions
The in vivo and in vitro approaches used in the current study suggest that a decrease in muscle IP6K1 may be linked to whole body improvements in SI2*. In addition, high-intensity exercise reduces HPG in insulin-resistant individuals
Least action principle for envelope functions in abrupt heterostructures
We apply the envelope function approach to abrupt heterostructures starting
with the least action principle for the microscopic wave function. The
interface is treated nonperturbatively, and our approach is applicable to
mismatched heterostructure. We obtain the interface connection rules for the
multiband envelope function and the short-range interface terms which consist
of two physically distinct contributions. The first one depends only on the
structure of the interface, and the second one is completely determined by the
bulk parameters. We discover new structure inversion asymmetry terms and new
magnetic energy terms important in spintronic applications.Comment: 4 pages, 1 figur
Interface electronic states and boundary conditions for envelope functions
The envelope-function method with generalized boundary conditions is applied
to the description of localized and resonant interface states. A complete set
of phenomenological conditions which restrict the form of connection rules for
envelope functions is derived using the Hermiticity and symmetry requirements.
Empirical coefficients in the connection rules play role of material parameters
which characterize an internal structure of every particular heterointerface.
As an illustration we present the derivation of the most general connection
rules for the one-band effective mass and 4-band Kane models. The conditions
for the existence of Tamm-like localized interface states are established. It
is shown that a nontrivial form of the connection rules can also result in the
formation of resonant states. The most transparent manifestation of such states
is the resonant tunneling through a single-barrier heterostructure.Comment: RevTeX4, 11 pages, 5 eps figures, submitted to Phys.Rev.
Bayesian Methods for Exoplanet Science
Exoplanet research is carried out at the limits of the capabilities of
current telescopes and instruments. The studied signals are weak, and often
embedded in complex systematics from instrumental, telluric, and astrophysical
sources. Combining repeated observations of periodic events, simultaneous
observations with multiple telescopes, different observation techniques, and
existing information from theory and prior research can help to disentangle the
systematics from the planetary signals, and offers synergistic advantages over
analysing observations separately. Bayesian inference provides a
self-consistent statistical framework that addresses both the necessity for
complex systematics models, and the need to combine prior information and
heterogeneous observations. This chapter offers a brief introduction to
Bayesian inference in the context of exoplanet research, with focus on time
series analysis, and finishes with an overview of a set of freely available
programming libraries.Comment: Invited revie
- …