759 research outputs found

    A Front-End ASIC for the Dimuon Arm Trigger of the ALICE Experiment

    Get PDF
    A first prototype of the front-end ASIC dedicated to the trigger detector of the dimuon arm of ALICE has been designed and tested in the "Laboratoire de Physique Corpusculaire" of Clermont-Fd.This set-up is based on the Resisitive Plate Chamber (RPC), a gaseous detector which can be operated either in streamer or avalanche mode. The streamer mode has the advantage of providing large signals that can be discriminated without amplification, whereas the avalanche mode presents a better rate capability and time resolution with conventional discrimination techniques.Since we propose to operate the RPCs in streamer mode in ALICE, we have studied a new discrimination technique in order to obtain a time resolution better than 2 ns in this mode. The method used in this dedicated circuit is described, performances and test results are given, as well as the evaluation done in the test beam of summer 2000

    Seasonality of the hydrological cycle in major South and Southeast Asian river basins as simulated by PCMDI/CMIP3 experiments

    Get PDF
    In this study, we investigate how PCMDI/CMIP3 general circulation models (GCMs) represent the seasonal properties of the hydrological cycle in four major South and Southeast Asian river basins (Indus, Ganges, Brahmaputra and Mekong). First, we examine the skill of the GCMs by analysing their performance in simulating the 20th century climate (1961–2000 period) using historical forcing (20c3m experiment), and then we analyse the projected changes for the corresponding 21st and 22nd century climates under the SRESA1B scenario. The CMIP3 GCMs show a varying degree of skill in simulating the basic characteristics of the monsoonal precipitation regimes of the Ganges, Brahmaputra and Mekong basins, while the representation of the hydrological cycle over the Indus Basin is poor in most cases, with a few GCMs not capturing the monsoonal signal at all. While the model outputs feature a remarkable spread for the monsoonal precipitation, a satisfactory representation of the western mid-latitude precipitation regime is instead observed. Similarly, most of the models exhibit a satisfactory agreement for the basin-integrated runoff in winter and spring, while their spread is large for the runoff during the monsoon season. For the future climate scenarios, most models foresee a decrease in the winter P − E over all four basins, while agreement is found on the decrease of the spring P − E over the Indus and Ganges basins only. Such decreases in P − E are mainly due to the decrease in precipitation associated with the western mid-latitude disturbances. Consequently, for the Indus and Ganges basins, the runoff drops during the spring season while it rises during the winter season. Such changes indicate a shift from rather glacial and nival to more pluvial runoff regimes, particularly for the Indus Basin. Furthermore, the rise in the projected runoff, along with the increase in precipitation during summer and autumn, indicates an intensification of the summer monsoon regime for all study basins

    Assessment of Stress in Laboratory Beagle Dogs Constrained by a Pavlov Sling

    Get PDF
    The 3Rs - Replacement, Reduction and Refinement - have become increasingly important in designing animal experiments. The Pavlov sling is thought to be a non-invasive method to restrain dogs for examinations. The aim of our study was to investigate whether laboratory Beagle dogs that had been trained to tolerate restraint by a Pavlov sling are stressed by this procedure and, furthermore, to analyze their behavior during this period. Five male and five female Beagle dogs were used, each three years of age. Animals were restrained in the Pavlov sling for 30 min on six days with an interval of at least two days. The following behaviors were recorded every minute for each session: postures of body, head, and ears, as well as state of eyes, tail, legs, and mouth. Additionally, the animals were observed for the occurrence of particular stress signs, including body shaking, sweating of the paws, increased saliva production, piloerection, blinking of eyes, snout licking, yawning, and panting. As an indicator for stress, salivary cortisol levels were measured before, during, and after each session. Our results show that for most behavioral parameters, e.g., body, leg, head, tail, and ear posture, the frequency of changes between different behavior patterns, as well as cortisol concentration, were not influenced by restraint in the Pavlov sling. Therefore, the Pavlov sling does not seem to be perceived as a stressful situation by the Beagle dogs. Our study demonstrates that under certain conditions the use of the Pavlov sling in trained dogs can substitute for more ordinary methods of immobilization, e.g., the use of narcotics

    A Dynamic Sustainability Analysis of Energy Landscapes in Egypt: A Spatial Agent-Based Model Combined with Multi-Criteria Decision Analysis

    No full text
    To respond to the emerging challenge of climate change, feasible strategies need to be formulated towards sustainable development and energy security on a national and international level. Lacking a dynamic sustainability assessment of technologies for electricity planning, this paper fills the gap with a multi-criteria and multi-stakeholder evaluation in an integrated assessment of energy systems. This allows to select the most preferred strategies for future planning of energy security in Egypt, with a focus on alternative energy pathways and a sustainable electricity supply mix up to 2100. A novel prototype model is used to integrate multi-criteria decision analysis (MCDA) as a premium decision support approach with agent-based modeling (ABM). This tool is popular in analyzing dynamic complex systems. A GIS-based spatial ABM analyzes future pathways for energy security in Egypt, depending on the preferences of agents for selected criteria to facilitate the transformation of energy landscapes. The study reveals significant temporal variations in the spatial ranking of technologies between actors in the energy sector over this period. We conclude that in order to attain a sustainable energy landscape, we should involve relevant stakeholders and analyze their interactions while considering local spatial conditions and key dimensions of sustainable development

    Mass elevation and lee effects markedly lift the elevational distribution of ground beetles in the Himalaya-Tibet orogen

    No full text
    Mass elevation and lee effects markedly influence snow lines and tree lines in high mountain systems. However, their impact on other phenomena or groups of organisms has not yet been quantified. Here we quantitatively studied their influence in the Himalaya–Tibet orogen on the distribution of ground beetles as model organisms, specifically whether the ground beetle distribution increases from the outer to the inner parts of the orogen, against latitudinal effects. We also tested whether July temperature and solar radiation are predictors of the beetle’s elevational distribution ranges. Finally, we discussed the general importance of these effects for the distributional and evolutionary history of the biota of High Asia. We modelled spatially explicit estimates of variables characterizing temperature and solar radiation and correlated the variables with the respective lower elevational range of 118 species of ground beetles from 76 high-alpine locations. Both July temperature and solar radiation significantly positively correlated with the elevational ranges of high-alpine beetles. Against the latitudinal trend, the median elevation of the respective species distributions increased by 800 m from the Himalayan south face north to the Transhimalaya. Our results indicate that an increase in seasonal temperature due to mass elevation and lee effects substantially impact the regional distribution patterns of alpine ground beetles of the Himalaya–Tibet orogen and are likely to affect also other soil biota there and in mountain ranges worldwide. Since these effects must have changed during orogenesis, their potential impact must be considered when biogeographic scenarios based on geological models are derived. As this has not been the practice, we believe that large biases likely exist in many paleoecological and evolutionary studies dealing with the biota from the Himalaya-Tibet orogen and mountain ranges worldwide
    • 

    corecore