66 research outputs found

    Haematology and Leucocytozoonosis of Great Tits (Parus Major L.) During Winter

    Full text link

    Toxoplasma gondii, Neospora caninum and Encephalitozoon cuniculi in Animals from Captivity (Zoo and Circus Animals)

    Get PDF
    Problems with parasitic infections are common in zoological gardens and circuses. In some animals it can lead to several disorders such as systemic disease, reproductive disorders (abortions and neonatal mortality), and even to death if severe illness is untreated. Thus, the aim of this study was to evaluate the prevalence of three common parasites in 74 animals from three zoos, and four circuses in Southern Italy. Antibodies to Toxoplasma gondii, Neospora caninum, and Encephalitozoon cuniculi were detected in 51%, 12%, and 20% of animals, respectively. Co‐infections of T. gondii and N. caninum were reported in seven animals (9%) and co‐infection of T. gondii and E. cuniculi in one animal. T. gondii, N. caninum and E. cuniculi seroprevalence differed in type of diet (P ≤ 0.0001; P ≤ 0.037 and P ≤ 0.004, respectively). T. gondii and E. cuniculi seroprevalence also differed in animal families (P ≤ 0.0001) and according to type of housing (P ≤ 0.003), respectively. Statistical differences were not found in other characteristics (gender, age, country of birth, origin, and contact with cats or dogs). This is the first serological study focusing on protozoan and microsporidian parasites in zoo and circus animals from Southern Italy and the first detection of antibodies to E. cuniculi in camels in Europe

    Topography of Genetic Loci in Tissue Samples: Towards New Diagnostic Tool Using Interphase FISH and High-Resolution Image Analysis Techniques

    Get PDF
    Using single and dual colour fluorescence in situ hybridisation (FISH) combined with image analysis techniques the topographic characteristics of genes and centromeres in nuclei of human colon tissue cells were investigated. The distributions of distances from the centre‐of‐nucleus to genes (centromeres) and from genes to genes (centromeres to centromeres) were studied in normal colon tissue cells found in the neighbourhood of tumour samples, in tumour cell line HT‐29 and in promyelocytic HL‐60 cell line for comparison. Our results show that the topography of genetic loci determined in 3D‐fixed cell tissue corresponds to that obtained for 2D‐fixed cells separated from the tissue. The distributions of the centre‐of‐nucleus to gene (centromere) distances and gene to gene (centromere to centromere) distances and their average values are different for various genetic loci but similar for normal colon tissue cells, HT‐29 colon tumour cell line and HL‐60 promyelocytic cell line. It suggests that the arrangement of genetic loci in cell nucleus is conserved in different types of human cells. The investigations of trisomic loci in HT‐29 cells revealed that the location of the third genetic element is not different from the location of two homologues in diploid cells. We have shown that the topographic parameters used in our experiments for different genetic elements are not tissue or tumour specific. In order to validate high‐resolution cytometry for oncology, further investigations should include more precise parameters reflecting the state of chromatin in the neighbourhood of critical oncogenes or tumour suppresser genes

    Characteristics of Acacia mangium shoot apical meristems in natural and in vitro conditions in relation to heteroblasty

    Get PDF
    PDF version of the authors can be published in January 2013International audienceMorphological and histocytological characteristics of Acacia mangium shoot apical meristems (SAMs) were assessed in natural and in vitro conditions in relation to heteroblasty. In the natural environment, SAMs with a mature-phyllode morphology were much bigger, contained more cells with larger vacuolated area, or vacuome, and lower nucleoplasmic ratios than those from the juvenile type (Juv). In these latter, nuclei appeared more voluminous, evenly and lightly stained, with clearly distinguishable nucleolei and less abundant chromocenters. In vitro, where reversions from mature to juvenile morphological traits do occur unpredictably, heteroblasty was less obvious in the SAM characteristics examined. In vitro SAMs corresponding to the juvenile and mature types showed similarities with outdoor Juv SAMs, but could be distinguished from these latter by a much larger vacuome that might be induced by the culture conditions. These findings encourage pursuing the investigations at the chromatin and nucleolus level in SAM zones where heteroblasty-related differences have been detected
    corecore