3 research outputs found

    A time-resolved proteomic and prognostic map of COVID-19

    Get PDF
    COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease

    International Guillain-Barr\uc3\ua9 Syndrome Outcome Study: protocol of a prospective observational cohort study on clinical and biological predictors of disease course and outcome in Guillain-Barr\uc3\ua9 syndrome

    No full text
    Guillain-Barr\uc3\ua9 syndrome (GBS) is an acute polyradiculoneuropathy with a highly variable clinical presentation, course, and outcome. The factors that determine the clinical variation of GBS are poorly understood which complicates the care and treatment of individual patients. The protocol of the ongoing International GBS Outcome Study (IGOS), a prospective, observational, multicenter cohort study that aims to identify the clinical and biological determinants and predictors of disease onset, subtype, course and outcome of GBS is presented here. Patients fulfilling the diagnostic criteria for GBS, regardless of age, disease severity, variant forms, or treatment, can participate if included within 2 weeks after onset of weakness. Information about demography, preceding infections, clinical features, diagnostic findings, treatment, course, and outcome is collected. In addition, cerebrospinal fluid and serial blood samples for serum and DNA is collected at standard time points. The original aim was to include at least 1,000 patients with a follow-up of 1\ue2\u80\u933 years. Data are collected via a web-based data entry system and stored anonymously. IGOS started in May 2012 and by January 2017 included more than 1,400 participants from 143 active centers in 19 countries across 5 continents. The IGOS data/biobank is available for research projects conducted by expertise groups focusing on specific topics including epidemiology, diagnostic criteria, clinimetrics, electrophysiology, antecedent events, antibodies, genetics, prognostic modeling, treatment effects, and long-term outcome of GBS. The IGOS will help to standardize the international collection of data and biosamples for future research of GBS

    Original research: Second IVIg course in Guillain-Barr\ue9 syndrome with poor prognosis: the non-randomised ISID study.

    No full text
    OBJECTIVE: To compare disease course in patients with Guillain-Barr\ue9 syndrome (GBS) with a poor prognosis who were treated with one or with two intravenous immunoglobulin (IVIg) courses. METHODS: From the International GBS Outcome Study, we selected patients whose modified Erasmus GBS Outcome Score at week 1 predicted a poor prognosis. We compared those treated with one IVIg course to those treated with two IVIg courses. The primary endpoint, the GBS disability scale at 4 weeks, was assessed with multivariable ordinal regression. RESULTS: Of 237 eligible patients, 199 patients received a single IVIg course. Twenty patients received an 'early' second IVIg course (1-2 weeks after start of the first IVIg course) and 18 patients a 'late' second IVIg course (2-4 weeks after start of IVIg). At baseline and 1\u2009week, those receiving two IVIg courses were more disabled than those receiving one course. Compared with the one course group, the adjusted OR for a better GBS disability score at 4 weeks was 0.70 (95%CI 0.16 to 3.04) for the early group and 0.66 (95%CI 0.18 to 2.50) for the late group. The secondary endpoints were not in favour of a second IVIg course. CONCLUSIONS: This observational study did not show better outcomes after a second IVIg course in GBS with poor prognosis. The study was limited by small numbers and baseline imbalances. Lack of improvement was likely an incentive to start a second IVIg course. A prospective randomised trial is needed to evaluate whether a second IVIg course improves outcome in GBS
    corecore