5 research outputs found

    Bioactive Compounds from Ephedra fragilis: Extraction Optimization, Chemical Characterization, Antioxidant and AntiGlycation Activities

    No full text
    Response surface methodology (RSM) with a Box–Behnken design (BBD) was used to optimize the extraction of bioactive compounds from Ephedra fragilis. The results suggested that extraction with 61.93% ethanol at 44.43 °C for 15.84 h was the best solution for this combination of variables. The crude ethanol extract (CEE) obtained under optimum extraction conditions was sequentially fractionated with solvents of increasing polarity. The content of total phenolic (TP) and total flavonoid (TF) as well as the antioxidant and antiglycation activities were measured. The phytochemical fingerprint profile of the fraction with the highest activity was characterized by using RP-HPLC. The ethyl acetate fraction (EAF) had the highest TP and TF contents and exhibited the most potent antioxidant and antiglycation activities. The Pearson correlation analysis results showed that TP and TF contents were highly significantly correlated with the antioxidant and antiglycation activities. Totally, six compounds were identified in the EAF of E. fragilis, including four phenolic acids and two flavonoids. Additionally, molecular docking analysis also showed the possible connection between identified bioactive compounds and their mechanisms of action. Our results suggest new evidence on the antioxidant and antiglycation activities of E. fragilis bioactive compounds that may be applied in the treatment and prevention of aging and glycation-associated complications

    The chemical composition, in vitro, and in silico studies of Lavandula mairei essential oil

    No full text
    Lavandula mairei is an aromatic, and medicinal plant endemic to Morocco, mainly found in the southeastern region of the Kingdom, and used in traditional medicine for its many benefits. The purpose of the study was to identify the chemical composition of Lavandula mairei essential oil using Gas Chromatography - Tandem Mass Spectrometry, to evaluate the antimicrobial activity of the plant against bacterial strains (Staphylococcus aureus, Staphylococcus aureus MRSA, Enterococcus faecalis, Escherichia coli ATCC 25922, Escherichia coli ESBL, Klebsiella pneumoniae ATCC 700603), and two fungal strains (Aspergillus niger ATCC 10231, Candida albicans ATCC 16404) in order to measure the microbial growth inhibition zone diameter, and to determine the minimum inhibitory, bactericidal, and fungicidal concentration of the essential oil (MIC, MBC, and MFC). Concerning antioxidant activity, six assays (6DPPH, and 1ABTS Free Radical Scavenging Assay, Total Antioxidant Capacity, Hydroxyl Radical, Reducing Power, and β-Carotene Bleaching Inhibition) were performed to determine the antioxidant potential of the essential oil. For the in silico aspect, molecular docking studies were performed to explore the potential interactions of some compounds with five microbial targets (i) Dihydropteroate synthase (1AJ0), ii) The elongation factor EF-Tu (1OB2), iii) d-alanine ligase (2I80), iv) DNA gyrase (2XCT), v) The cytochrome P450 monooxygenase (5V5Z), and 2ADMET prediction analysis was completed on a compound designated as dehydroabietinol. Carvacrol was identified as the major compound (36.38%) by analysis of the chemical composition, E. coli ATCC 25922 (MIC = 1.87 mg/mL ± 0.00, MBC = 15.00 mg/mL ± 0.00), and Enterococcus faecalis (MIC = 0.23 mg/mL ± 0.00, MBC = 5.53 mg/mL ± 2.77) were the most sensitive to the antibacterial treatment, and Candida albicans was resistant to the essential oil. The highest antioxidant potential of the plant was observed in the β-carotene bleaching inhibition test (IC50 = 1.55 mg/mL ± 0.009 and 90 % of inhibition). In the in silico study, the compound dehydroabietinol provided relevant evidence for molecular docking, and this was confirmed by the ADMET prediction analysis. The results of the study were significant, and further experiments will be necessary to find out more about the biological properties of Lavandula mairei

    Alternatives Therapeutic Approaches to Conventional Antibiotics: Advantages, Limitations and Potential Application in Medicine

    No full text
    Resistance to antimicrobials and particularly multidrug resistance is one of the greatest challenges in the health system nowadays. The continual increase in the rates of antimicrobial resistance worldwide boosted by the ongoing COVID-19 pandemic poses a major public health threat. Different approaches have been employed to minimize the effect of resistance and control this threat, but the question still lingers as to their safety and efficiency. In this context, new anti-infectious approaches against multidrug resistance are being examined. Use of new antibiotics and their combination with new β-lactamase inhibitors, phage therapy, antimicrobial peptides, nanoparticles, and antisense antimicrobial therapeutics are considered as one such promising approach for overcoming bacterial resistance. In this review, we provide insights into these emerging alternative therapies that are currently being evaluated and which may be developed in the future to break the progression of antimicrobial resistance. We focus on their advantages and limitations and potential application in medicine. We further highlight the importance of the combination therapy approach, wherein two or more therapies are used in combination in order to more effectively combat infectious disease and increasing access to quality healthcare. These advances could give an alternate solution to overcome antimicrobial drug resistance. We eventually hope to provide useful information for clinicians who are seeking solutions to the problems caused by antimicrobial resistance
    corecore