11 research outputs found
Immunohistochemical Estrogen receptor determination in human Breast carcinoma: correlation with histologic differentiation and age of the patients
An immunohistochemical assay for the measurement of estrogen receptor (ER) has been evaluated on 290 consecutive human breast biopsy and mastectomy specimens in the year 1992 at The Aga Khan University Hospital laboratories. Immunohistochemical localization of estrogen receptor on frozen/paraffin section was scored in a semi-quantitative fashion incorporating both the intensity and the distribution of specific staining. Histologic grading of the tumour was performed according to Bloom’s method. In this study, 21% of the tumours were estrogen receptor negative, 15% were weak positive, 25% intermediate positive and 39% strong positive. Fifty percent of the well differentiated tumours showed strong ER positivity against 27% of the poorly differentiated tumours. Seventy eight percent of all negative estrogen receptors were in patients younger than 50 years of age (pre-menopausal group), while 52% of strong estrogen receptor positivity was observed in patients older than 50 years (post- menopausal). This study demonstrates the value of immunohistochemical method to determine the ER status in patients with advanced breast cancer
A multi-stakeholder strategy to identify conservation priorities in Peninsular Malaysia
Malaysia, with its rapidly growing economy, exemplifies the tensions between conservation and development faced by many tropical nations. Here we present the results of a multi-stakeholder engagement exercise conducted to (1) define conservation priorities in Peninsular Malaysia and (2) explore differences in perceptions among and within stakeholder groups (i.e. government, academia, NGOs and the private sector). Our data collection involved two workshops and two online surveys where participants identified seven general conservation themes and ranked the top five priority issues within each theme. The themes were: (1) policy and management, (2) legislation and enforcement, (3) finance and resource allocation, (4) knowledge, research and development, (5) socio-economic issues, (6) public awareness and participation and (7) rights of nature. In spite of their very different backgrounds and agendas, the four stakeholder groups showed general agreement in their priority preferences except for two issues. Respondents from government and private sector differed the most from each other in their priority choices while academia and NGO showed the highest degree of similarity. This ranked list of 35 conservation priorities is expected to influence the work of policy-makers and others in Peninsular Malaysia and can be used as a model to identify conservation priorities elsewhere
Bats in the anthropogenic matrix: Challenges and opportunities for the conservation of chiroptera and their ecosystem services in agricultural landscapes
Intensification in land-use and farming practices has had largely negative effects on bats, leading to population declines and concomitant losses of ecosystem services. Current trends in land-use change suggest that agricultural areas will further expand, while production systems may either experience further intensification
(particularly in developing nations) or become more environmentally friendly (especially in Europe). In this chapter, we review the existing literature on how agricultural management affects the bat assemblages and the behavior of individual bat species, as well as the literature on provision of ecosystem services by bats (pest insect suppression and pollination) in agricultural systems. Bats show highly variable responses to habitat conversion, with no significant change in species
richness or measures of activity or abundance. In contrast, intensification within agricultural systems (i.e., increased agrochemical inputs, reduction of natural structuring elements such as hedges, woods, and marshes) had more consistently negative
effects on abundance and species richness. Agroforestry systems appear to mitigate negative consequences of habitat conversion and intensification, often having higher abundances and activity levels than natural areas. Across biomes, bats play key roles in limiting populations of arthropods by consuming various agricultural pests. In tropical areas, bats are key pollinators of several commercial fruit species. However, these substantial benefits may go unrecognized by farmers, who sometimes associate bats with ecosystem disservices such as crop raiding. Given the importance of bats for global food production, future agricultural management should focus on “wildlife-friendly” farming practices that allow more bats to exploit and persist
in the anthropogenic matrix so as to enhance provision of ecosystem services. Pressing research topics include (1) a better understanding of how local-level versus
landscape-level management practices interact to structure bat assemblages,
(2) the effects of new pesticide classes and GM crops on bat populations, and (3) how increased documentation and valuation of the ecosystem services provided by bats could improve attitudes of producers toward their conservation
Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences
Non peer reviewe
Why conservationists should be concerned about natural resource legislation affecting indigenous peoples' rights: lessons from Peninsular Malaysia
For conservation to be effective in forests with indigenous peoples, there needs to be greater recognition of indigenous customary rights, particularly with regards to their use of natural resources. Ideally, legislation regulating the use of natural resources should include provisions for the needs of both indigenous peoples and biodiversity. In reality, however, legislative weaknesses often exist and these can result in negative impacts, either on indigenous peoples' livelihoods, their surrounding biodiversity, or both. Here, our case study demonstrates why conservationists need to pay greater attention to natural resource legislation affecting indigenous peoples' rights. Apart from examining relevant laws for ambiguities that may negatively affect biodiversity and livelihoods of indigenous people in Peninsular Malaysia (known as the Orang Asli), we also provide supporting information on actual resource use based on questionnaire surveys. In order to address these ambiguities, we propose possible legislative reconciliation to encourage policy reform. Although there are positive examples of conservationists elsewhere adopting a more inclusive and participatory approach by considering the needs of indigenous peoples, greater recognition must be afforded to land and indigenous rights within natural resource laws for the benefit of indigenous peoples and biodiversity
The critical importance of old world fruit bats for healthy ecosystems and economies
FIGURE 6 | Pteropodid-plant interactions that are potentially double mutualisms, in which a pteropodid species might act as both pollinator and seed disperser for the same plant species. Double mutualisms were assessed at the species level for both plants and bats. The graph shows the number of species-species interactions within each plant family and pteropodid genus. Only families with more than one interaction are shown. Plants in an additional 13 families were recorded for overall pteropodid diet, but only one interaction was recorded for each, and thus not included here.Published as part of Aziz, Sheema Abdul, McConkey, Kim R., Tanalgo, Krizler, Sritongchuay, Tuanjit, Low, Mary-Ruth, Yong, Joon Yee, Mildenstein, Tammy L., Nuevo-Diego, Christine Ely, Lim, Voon-Ching & Racey, Paul A., 2021, The Critical Importance of Old World Fruit Bats for Healthy Ecosystems and Economies, pp. 1-29 in Frontiers in Ecology and Evolution 9 on page 15, DOI: 10.3389/fevo.2021.641411, http://zenodo.org/record/467563
Recommended from our members
Impact of the International Nosocomial Infection Control Consortium (INICC)’s multidimensional approach on rates of ventilator-associated pneumonia in intensive care units in 22 hospitals of 14 cities of the Kingdom of Saudi Arabia
To analyze the impact of the International Nosocomial Infection Control Consortium (INICC) Multidimensional Approach (IMA) and use of INICC Surveillance Online System (ISOS) on ventilator-associated pneumonia (VAP) rates in Saudi Arabia from September 2013 to February 2017.
A multicenter, prospective, before–after surveillance study on 14,961 patients in 37 intensive care units (ICUs) of 22 hospitals. During baseline, we performed outcome surveillance of VAP applying the definitions of the CDC/NHSN. During intervention, we implemented the IMA and the ISOS, which included: (1) a bundle of infection prevention practice interventions, (2) education, (3) outcome surveillance, (4) process surveillance, (5) feedback on VAP rates and consequences and (6) performance feedback of process surveillance. Bivariate and multivariate regression analyses were performed using generalized linear mixed models to estimate the effect of intervention.
The baseline rate of 7.84 VAPs per 1000 mechanical-ventilator (MV)-days―with 20,927 MV-days and 164 VAPs―, was reduced to 4.74 VAPs per 1000 MV-days―with 118,929 MV-days and 771 VAPs―, accounting for a 39% rate reduction (IDR 0.61; 95% CI 0.5–0.7; P 0.001).
Implementing the IMA was associated with significant reductions in VAP rates in ICUs of Saudi Arabia
Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences
The first International Peat Congress (IPC) held in the tropics - in Kuching (Malaysia) - brought together over 1000 international peatland scientists and industrial partners from across the world (“International Peat Congress with over 1000 participants!,” 2016). The congress covered all aspects of peatland ecosystems and their management, with a strong focus on the environmental, societal and economic challenges associated with contemporary large-scale agricultural conversion of tropical peat.
However, recent encouraging developments towards better management of tropical peatlands have been undermined by misleading newspaper headlines and statements first published during the conference. Articles in leading regional newspapers (“Oil palm planting on peat soil handled well, says Uggah,” 2016; Cheng & Sibon, 2016; Nurbianto, 2016a, 2016b; Wong, 2016) widely read across the region, portrayed a general consensus, in summary of the conference, that current agricultural practices in peatland areas, such as oil palm plantations, do not have a negative impact on the environment. This view is not shared by many scientists, or supported by the weight of evidence that business-as-usual management is not sustainable for tropical peatland agriculture.
Peer-reviewed scientific studies published over the last 19 years, as reflected in the Intergovernmental Panel on Climate Change (IPCC) Wetland Supplement on greenhouse gas inventories, affirms that drained tropical peatlands lose considerable amounts of carbon at high rates (Drösler et al., 2014). Tropical peat swamp forests have sequestered carbon for millennia, storing a globally significant reservoir below ground in the peat (Page et al., 2011; Dommain et al., 2014). However, contemporary agriculture techniques on peatlands heavily impact this system through land clearance, drainage and fertilization, a process that too often involves fire. Along with biodiversity losses driven by deforestation (Koh et al., 2011; Posa et al., 2011; Giam et al., 2012), the carbon stored in drained peatlands is rapidly lost through oxidation, dissolution and fire (Couwenberg et al., 2009; Hirano et al., 2012; Ramdani & Hino, 2013; Schrier-Uijl et al., 2013; Carlson et al., 2015; Warren et al., 2016). Tropical peat fires are a major contributor to global greenhouse gas emissions and produce transboundary haze causing significant impacts on human health, regional economies and ecosystems (Page et al., 2002; Marlier et al., 2012; Jaafar & Loh, 2014; Chisholm et al., 2016; Huijnen et al., 2016; Stockwell et al., 2016). With future El-Niño events predicted to increase in frequency and severity (Cai et al., 2014) and with fire prevalence now decoupled from drought years (Gaveau et al., 2014), future large scale fire and haze events are imminent given the extensive areas of now drained fire prone drained peatlands (Kettridge et al., 2015; Turetsky et al., 2015; Page & Hooijer, 2016).
In reality, just how much of the estimated 69 gigatonnes of carbon (Page et al., 2011) stored in Southeast Asian tropical peatlands is being lost due to agricultural operations under the current management regime is still uncertain. Of great concern is that none of the agricultural management methods applied to date have been shown to prevent the loss of peat and the associated subsidence of the peatland surface following drainage (Wösten et al., 1997; Melling et al., 2008; Hooijer et al., 2012; Evers et al., 2016). Recent projections suggest that large areas of currently drained coastal peatlands will become un-drainable, and progressively be subjected to longer periods of inundation by river and ultimately sea water (Hooijer et al., 2015a, 2015b; Sumarga et al., 2016). With growing risk of saltwater intrusion, agriculture in these coastal lands will become increasingly untenable, calling into question the very notion of “long-term sustainability of tropical peatland agriculture”.
A more accurate view of drained peatland agriculture is that of an extractive industry, in which a finite resource (the peat) is ‘mined’ to produce food, fibre and fuel, driven by global demand. In developing countries with growing populations, there are strong socio-economic arguments for exploiting this resource to support local livelihoods and broader economic development (Mizuno et al., 2016). However, an acceptance that on-going peat loss is inevitable under this scenario. Science-based measures towards improved management, including limitations on the extent of plantation development, can be used to minimise the rate of this peat loss (President of Indonesia, 2011). Such an evidence-based position, supported with data and necessary legal instruments are needed for sustainable futures. The scientifically unfounded belief that drained peatland agriculture can be made ‘sustainable’, and peat loss can be halted, via unproven methods such as peat compaction debilitates the effort to find sustainable possibilities. To a large extent, the issues surrounding unsustainable peatland management have now been recognized by sections of industry (Wilmar, 2013; APP, 2014; Cargill Inc., 2014; Mondelēz International, 2014; Sime Darby Plantation, 2014; APRIL, 2015; Olam International, 2015), government (President of Indonesia, 2014, 2016; Mongabay, 2015; Mongabay Haze Beat, 2015; Hermansyah, 2016) and consumers (Wijedasa et al., 2015). In recognition of the constraints and risks of peatland development, many large and experienced oil palm and pulpwood companies have halted further development on peat and introduced rigorous management requirements for existing peatland plantations(Lim et al., 2012). However, the denial of the empirical basis calling for improved peatland management remains persistent in influential policy spaces, as illustrated by the articles reporting on the conference (“Oil palm planting on peat soil handled well, says Uggah,” 2016; Cheng & Sibon, 2016; Nurbianto, 2016a, 2016b).
The search for more responsible tropical peatland agriculture techniques includes promising recent initiatives to develop methods to cultivate crops on peat under wet conditions (Giesen, 2015; Dommain et al., 2016; Mizuno et al., 2016). While a truly sustainable peatland agriculture method does not yet exist, the scientific community and industry are collaborating in the search for solutions(International Peat Society, 2016), and for interim measures to mitigate ongoing rates of peat loss under existing plantations. Failing to recognize the devastating consequences of the current land use practices on peat soils and failing to work together to address them could mean that the next generation will have to deal with an irreversibly altered, dysfunctional landscape where neither environment nor society, globally or locally, will be winners.JRC.D.1-Bio-econom