13 research outputs found

    Generation of a human iPSC-derived cardiomyocyte/fibroblast engineered heart tissue model

    Get PDF
    Animal models have proven integral to broadening our understanding of complex cardiac diseases but have been hampered by significant species-dependent differences in cellular physiology. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have shown great promise in the modelling of cardiac diseases despite limitations in functional and structural maturity. 3D stem cell-derived cardiac models represent a step towards mimicking the intricate microenvironment present in the heart as an in vitro model. Incorporation of non-myocyte cell types, such as cardiac fibroblasts, into engineered heart tissue models (EHTs) can help better recapitulate the cell-to-cell and cell-to-matrix interactions present in the human myocardium. Integration of human-induced pluripotent stem cell-derived cardiac fibroblasts (hiPSC-CFs) and hiPSC-CM into EHT models enables the generation of a genetically homogeneous modelling system capable of exploring the abstruse structural and electrophysiological interplay present in cardiac pathophysiology. Furthermore, the construction of more physiologically relevant 3D cardiac models offers great potential in the replacement of animals in heart disease research. Here we describe efficient and reproducible protocols for the differentiation of hiPSC-CMs and hiPSC-CFs and their subsequent assimilation into EHTs. The resultant EHT consists of longitudinally arranged iPSC-CMs, incorporated alongside hiPSC-CFs. EHTs with both hiPSC-CMs and hiPSC-CFs exhibit slower beating frequencies and enhanced contractile force compared to those composed of hiPSC-CMs alone. The modified protocol may help better characterise the interplay between different cell types in the myocardium and their contribution to structural remodelling and cardiac fibrosis

    Generation of a human iPSC-derived cardiomyocyte/fibroblast engineered heart tissue model [version 2; peer review: 1 approved, 2 approved with reservations]

    Get PDF
    Animal models have proven integral to broadening our understanding of complex cardiac diseases but have been hampered by significant species-dependent differences in cellular physiology. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have shown great promise in the modelling of cardiac diseases despite limitations in functional and structural maturity. 3D stem cell-derived cardiac models represent a step towards mimicking the intricate microenvironment present in the heart as an in vitro model. Incorporation of non-myocyte cell types, such as cardiac fibroblasts, into engineered heart tissue models (EHTs) can help better recapitulate the cell-to-cell and cell-to-matrix interactions present in the human myocardium. Integration of human-induced pluripotent stem cell-derived cardiac fibroblasts (hiPSC-CFs) and hiPSC-CM into EHT models enables the generation of a genetically homogeneous modelling system capable of exploring the abstruse structural and electrophysiological interplay present in cardiac pathophysiology. Furthermore, the construction of more physiologically relevant 3D cardiac models offers great potential in the replacement of animals in heart disease research. Here we describe efficient and reproducible protocols for the differentiation of hiPSC-CMs and hiPSC-CFs and their subsequent assimilation into EHTs. The resultant EHT consists of longitudinally arranged iPSC-CMs, incorporated alongside hiPSC-CFs. EHTs with both hiPSC-CMs and hiPSC-CFs exhibit slower beating frequencies and enhanced contractile force compared to those composed of hiPSC-CMs alone. The modified protocol may help better characterise the interplay between different cell types in the myocardium and their contribution to structural remodelling and cardiac fibrosis

    Insights into the Role of a Cardiomyopathy-Causing Genetic Variant in ACTN2

    Get PDF
    Pathogenic variants in ACTN2, coding for alpha-actinin 2, are known to be rare causes of Hyper-trophic Cardiomyopathy. However, little is known about the underlying disease mechanisms. Adult heterozygous mice carrying the Actn2 p.Met228Thr variant were phenotyped by echocar-diography. For homozygous mice, viable E15.5 embryonic hearts were analysed by High Reso-lution Episcopic Microscopy and wholemount staining, complemented by unbiased proteomics, qPCR and Western blotting. Heterozygous Actn2 p.Met228Thr mice have no overt phenotype. Only mature males show molecular parameters indicative of cardiomyopathy. By contrast, the variant is embryonically lethal in the homozygous setting and E15.5 hearts show multiple morphological abnormalities. Molecular analyses, including unbiased proteomics, identified quantitative abnormalities in sarcomeric parameters, cell cycle defects and mitochondrial dys-function. The mutant alpha-actinin protein is found to be destabilised, associated with increased activity of the ubiquitin-proteosomal system. This missense variant in alpha-actinin renders the protein less stable. In response, the ubiquitin-proteosomal system is activated; a mechanism which has been implicated in cardiomyopathies previously. In parallel, lack of functional al-pha-actinin is thought to cause energetic defects through mitochondrial dysfunction. This seems, together with cell cycle defects, the likely cause of death of the embryos. The defects also have wide-ranging morphological consequences

    Antibiotics or prodiabetics?

    No full text

    Functional analysis of a gene-edited mouse model to gain insights into the disease mechanisms of a titin missense variant

    Get PDF
    Titin truncating variants are a well-established cause of cardiomyopathy; however, the role of titin missense variants is less well understood. Here we describe the generation of a mouse model to investigate the underlying disease mechanism of a previously reported titin A178D missense variant identified in a family with non-compaction and dilated cardiomyopathy. Heterozygous and homozygous mice carrying the titin A178D missense variant were characterised in vivo by echocardiography. Heterozygous mice had no detectable phenotype at any time point investigated (up to 1 year). By contrast, homozygous mice developed dilated cardiomyopathy from 3 months. Chronic adrenergic stimulation aggravated the phenotype. Targeted transcript profiling revealed induction of the foetal gene programme and hypertrophic signalling pathways in homozygous mice, and these were confirmed at the protein level. Unsupervised proteomics identified downregulation of telethonin and four-and-a-half LIM domain 2, as well as the upregulation of heat shock proteins and myeloid leukaemia factor 1. Loss of telethonin from the cardiac Z-disc was accompanied by proteasomal degradation; however, unfolded telethonin accumulated in the cytoplasm, leading to a proteo-toxic response in the mice.We show that the titin A178D missense variant is pathogenic in homozygous mice, resulting in cardiomyopathy. We also provide evidence of the disease mechanism: because the titin A178D variant abolishes binding of telethonin, this leads to its abnormal cytoplasmic accumulation. Subsequent degradation of telethonin by the proteasome results in proteasomal overload, and activation of a proteo-toxic response. The latter appears to be a driving factor for the cardiomyopathy observed in the mouse model

    A genome-wide association study of pulmonary tuberculosis in Morocco

    No full text
    Although epidemiological evidence suggests a human genetic basis of pulmonary tuberculosis (PTB) susceptibility, the identification of specific genes and alleles influencing PTB risk has proven to be difficult. Previous genome-wide association (GWA) studies have identified only three novel loci with modest effect sizes in sub-Saharan African and Russian populations. We performed a GWA study of 550,352 autosomal SNPs in a family-based discovery Moroccan sample (on the full population and on the subset with PTB diagnosis at <25 years), which identified 143 SNPs with p < 1 × 10(−4). The replication study in an independent case/control sample identified four SNPs displaying a p < 0.01 implicating the same risk allele. In the combined sample including 556 PTB subjects and 650 controls these four SNPs showed suggestive association (2 × 10(−6) < p < 4 × 10(−5)): rs358793 and rs17590261 were intergenic, while rs6786408 and rs916943 were located in introns of FOXP1 and AGMO, respectively. Both genes are involved in the function of macrophages, which are the site of latency and reactivation of Mycobacterium tuberculosis. The most significant finding (p = 2 × 10(−6)) was obtained for the AGMO SNP in an early (<25 years) age-at-onset subset, confirming the importance of considering age-at-onset to decipher the genetic basis of PTB. Although only suggestive, these findings highlight several avenues for future research in the human genetics of PTB

    The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood

    No full text
    The microbiota "organ" is the central bioreactor of the gastrointestinal tract, populated by a total of 10 14 bacteria and characterized by a genomic content (microbiome), which represents more than 100 times the human genome. The microbiota plays an important role in child health by acting as a barrier against pathogens and their invasion with a highly dynamic modality, exerting metabolic multistep functions and stimulating the development of the host immune system, through well-organized programming, which influences all of the growth and aging processes. The advent of "omics" technologies (genomics, proteomics, metabolomics), characterized by complex technological platforms and advanced analytical and computational procedures, has opened new avenues to the knowledge of the gut microbiota ecosystem, clarifying some aspects on the establishment of microbial communities that constitute it, their modulation and active interaction with external stimuli as well as food, within the host genetic variability. With a huge interdisciplinary effort and an interface work between basic, translational, and clinical research, microbiologists, specialists in "-omics" disciplines, and clinicians are now clarifying the role of the microbiota in the programming process of several gut-related diseases, from the physiological symbiosis to the microbial dysbiosis stage, through an integrated systems biology approach.Copyright © 2014 International Pediatric Research Foundation, Inc
    corecore