221 research outputs found

    Unlocking the potential of RNA interference as a therapeutic tool

    Get PDF
    The existence of an intrinsic biochemical pathway enabling specified regulation of gene expression was unheard of until the final years of the last decade. The identification of ribonucleic acid interference (RNAi) in mammalian cells has nowadays become of extreme importance in the field of functional genomics and translational medicine. The advent of RNAi technology has brought to the scientific research and pharmaceutical communities the ability to regulate expression of any desired gene in a reproducible manner. Consequently, such technology may be utilised in the design of novel therapeutics for clinical conditions having dys-regulated gene expression. Since most RNAi-based therapies in the drug development pipeline of pharmaceutical companies utilise short interfering RNA (siRNA), this review will focus on the role of siRNA in drug development.peer-reviewe

    An introspective update on the influence of miRNAs in breast carcinoma and neuroblastoma chemoresistance

    Get PDF
    Chemoresistance to conventional cytotoxic drugsmay occur in any type of cancer and this can either be inherent or develop through time. Studies have linked this acquired resistance to the abnormal expression of microRNAs (miRNAs) that normally silence genes. At abnormal levels, miRNAs can either gain ability to silence tumour suppressor genes or else lose ability to silence oncogenes. miRNAs can also affect pathways that are involved in drug metabolism, such as drug efflux pumps, resulting in a resistant phenotype. The scope of this review is to provide an introspective analysis on the specific niches of breast carcinoma and neuroblastoma research.peer-reviewe

    Long noncoding RNAs and their link to cancer.

    Get PDF
    The central dogma of molecular biology, developed from the study of simple organisms such as Escherichia coli, has up until recently been that RNA functions mainly as an information intermediate between a DNA sequence (gene), localized in the cell nucleus, serving as a template for the transcription of messenger RNAs, which in turn translocate into the cytoplasm and act as blueprints for the translation of their encoded proteins. There are a number of classes of non-protein coding RNAs (ncRNAs) which are essential for gene expression to function. The specific number of ncRNAs within the human genome is unknown. ncRNAs are classified on the basis of their size. Transcripts shorter than 200 nucleotides, referred to as ncRNAs, which group includes miRNAs, siRNAs, piRNAs, etc, have been extensively studied. Whilst transcripts with a length ranging between 200 nt up to 100 kilobases, referred to as lncRNAs, make up the second group, and are recently receiving growing concerns. LncRNAs play important roles in a variety of biological processes, regulating physiological functions of organisms, including epigenetic control of gene regulation, transcription and post-transcription, affecting various aspects of cellular homeostasis, including proliferation, survival, migration and genomic stability. LncRNAs are also capable of tuning gene expression and impact cellular signalling cascades, play crucial roles in promoter-specific gene regulation, and X-chromosome inactivation. Furthermore, it has been reported that lncRNAs interact with DNA, RNA, and/or protein molecules, and regulate chromatin organisation, transcriptional and post-transcriptional regulation. Consequently, they are differentially expressed in tumours, and they are directly linked to the transformation of healthy cells into tumour cells. As a result of their key functions in a wide range of biological processes, lncRNAs are becoming rising stars in biology and medicine, possessing potential active roles in various oncologic diseases, representing a gold mine of potential new biomarkers and drug targets

    Plucked human hair shafts and biomolecular medical research

    Get PDF
    The hair follicle is a skin integument at the boundary between an organism and its immediate environment. The biological role of the human hair follicle has lost some of its ancestral importance. However, an indepth investigation of this miniorgan reveals hidden complexity with huge research potential. An essential consideration when dealing with human research is the awareness of potential harm and thus the absolute need not to harm—a rule aptly qualified by the Latin term “primum non nocere” (first do no harm). The plucked hair shaft offers such advantages. The use of stem cells found in hair follicles cells is gaining momentum in the field of regenerative medicine. Furthermore, current diagnostic and clinical applications of plucked hair follicles include their use as autologous and/or three-dimensional epidermal equivalents, together with their utilization as surrogate tissue in harmacokinetic and pharmacodynamics studies. Consequently, the use of noninvasive diagnostic procedures on hair follicle shafts, posing as a surrogate molecular model for internal organs in the individual patient for a spectrum of human disease conditions, can possibly become a reality in the near future.peer-reviewe

    The MIQE Revolution: implementation of standards for the reporting of quantitative PCR studies

    Get PDF
    The discovery of the polymerase chain reaction (PCR) a few decades ago initiated a global impact on the entirety of the medical and life sciences research spheres. Nowadays, essentially all laboratories focusing on such vital research employ in-house PCR techniques on a near-daily basis, due to the wide spectrum of applications which PCR technology can adopt itself to. Unfortunately, ubiquitously available and affordable technologies, such as RT-qPCR, do have a major passive drawback: inter-laboratory reproducibility. Variations in the routine methodologies implemented by individual laboratories can inevitably lead to severe lapse of data robustness and reliability for publication in peer-reviewed journals. In order to address this pressing issue, a consortium of eminent research group leaders in the field of RT-qPCR technology decided to propose a distinct set of standardized guidelines for the reporting of RT-qPCR study results, known as the Minimum Information for Publication of Quantitative Real Time PCR Experiments (MIQE), which were published in early 2009.2 This concept is very much similar to the one leading to the development of the Minimum Information for Microarray Experimets (MIAME) guidelines for reporting of microarray-based studies. In order to address this pressing issue, a consortium of eminent research group leaders in the field of RT-qPCR technology decided to propose a distinct set of standardized guidelines for the reporting of RT-qPCR study results, known as the Minimum Information for Publication of Quantitative Real Time PCR Experiments (MIQE), which were published in early 2009. This concept is very much similar to the one leading to the development of the Minimum Information for Microarray Experimets (MIAME) guidelines for reporting of microarray-based studies.-------------------Cite this article as: Ayers D. The MIQE Revolution: Implementation of standards for the reporting of quantitative PCR studies. Int J Cancer Ther Oncol 2014; 2(2):02026. DOI: 10.14319/ijcto.0202.

    The MIQE Revolution: implementation of standards for the reporting of quantitative PCR studies

    Get PDF
    The discovery of the polymerase chain reaction (PCR) a few decades ago initiated a global impact on the entirety of the medical and life sciences research spheres. Nowadays, essentially all laboratories focusing on such vital research employ in-house PCR techniques on a near-daily basis, due to the wide spectrum of applications which PCR technology can adopt itself to. Unfortunately, ubiquitously available and affordable technologies, such as RT-qPCR, do have a major passive drawback: inter-laboratory reproducibility. Variations in the routine methodologies implemented by individual laboratories can inevitably lead to severe lapse of data robustness and reliability for publication in peer-reviewed journals. In order to address this pressing issue, a consortium of eminent research group leaders in the field of RT-qPCR technology decided to propose a distinct set of standardized guidelines for the reporting of RT-qPCR study results, known as the Minimum Information for Publication of Quantitative Real Time PCR Experiments (MIQE), which were published in early 2009.2 This concept is very much similar to the one leading to the development of the Minimum Information for Microarray Experimets (MIAME) guidelines for reporting of microarray-based studies. In order to address this pressing issue, a consortium of eminent research group leaders in the field of RT-qPCR technology decided to propose a distinct set of standardized guidelines for the reporting of RT-qPCR study results, known as the Minimum Information for Publication of Quantitative Real Time PCR Experiments (MIQE), which were published in early 2009. This concept is very much similar to the one leading to the development of the Minimum Information for Microarray Experimets (MIAME) guidelines for reporting of microarray-based studies.-------------------Cite this article as: Ayers D. The MIQE Revolution: Implementation of standards for the reporting of quantitative PCR studies. Int J Cancer Ther Oncol 2014; 2(2):02026. DOI: 10.14319/ijcto.0202.6</p

    Expression stability of commonly used reference genes in canine articular connective tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The quantification of gene expression in tissue samples requires the use of reference genes to normalise transcript numbers between different samples. Reference gene stability may vary between different tissues, and between the same tissue in different disease states. We evaluated the stability of 9 reference genes commonly used in human gene expression studies. Real-time reverse transcription PCR and a mathematical algorithm were used to establish which reference genes were most stably expressed in normal and diseased canine articular tissues and two canine cell lines stimulated with lipolysaccaride (LPS).</p> <p>Results</p> <p>The optimal reference genes for comparing gene expression data between normal and diseased infrapatella fat pad were <it>RPL13A </it>and <it>YWHAZ </it>(M = 0.56). The ideal reference genes for comparing normal and osteoarthritic (OA) cartilage were <it>RPL13A </it>and <it>SDHA </it>(M = 0.57). The best reference genes for comparing normal and ruptured canine cranial cruciate ligament were <it>B2M </it>and <it>TBP </it>(M = 0.59). The best reference genes for normalising gene expression data from normal and LPS stimulated cell lines were <it>SDHA </it>and <it>YWHAZ </it>(K6) or <it>SDHA </it>and <it>HMBS </it>(DH82), which had expression stability (M) values of 0.05 (K6) and 0.07 (DH82) respectively. The number of reference genes required to reduce pairwise variation (V) to <0.20 was 4 for cell lines, 5 for cartilage, 7 for cranial cruciate ligament and 8 for fat tissue. Reference gene stability was not related to the level of gene expression.</p> <p>Conclusion</p> <p>The reference genes demonstrating the most stable expression within each different canine articular tissue were identified, but no single reference gene was identified as having stable expression in all different tissue types. This study underlines the necessity to select reference genes on the basis of tissue and disease specific expression profile evaluation and highlights the requirement for the identification of new reference genes with greater expression stability for use in canine articular tissue gene expression studies.</p

    Hybrid HIIT/isometrics strength training programs: a paradigm shift for physical exercise

    Get PDF
    Global population statistics demonstrate clear evidence that unhealthy lifestyle choices - including hyper-caloric, low-nutritional density diets and sedentary lifestyle - are raising the global burden of diseases, morbidity and mortality at alarming rates. Healthy diets and exercise are recommended by all health care professionals as a proven treatment and prevention measure for health conditions, yet less than 10% of the population in some countries rigorously follow the minimum physical activity recommendations. In addition, many that do follow physical exercise-and-diet recommended guidelines do not achieve tangible results due to questionable methodologies of such programs. Furthermore, the recent COVID-19 pandemic dramatically affected global healthcare and has contributed to exacerbate the situation due to imposed lockdowns, where the costs of sedentary lifestyles threaten to bankrupt an already overtaxed public health care. Consequently, the public health worldwide desperately needs practical and cost-effective measures to reduce the effects of non-communicable diseases. Muscle mass hypertrophy-based physical exercise and biological adapted diet could provide the physiological solution, while novel game-based technology could help the challenges of exercise compliance. This review aims to, firstly, to revise the importance of achieving, maintaining and recovering muscle mass and strength for improved health outcomes. Secondly, evaluate the benefits of directing the focus of medical interventions towards hypertrophic exercise and diet as an effective treatment to improve health and longevity. Thirdly, we propose the CyFit SmartGym, a novel device, as a potential screening tool for monitoring strength levels and as a HIIT/strength training for improving and documenting health outcomes

    Novel SFRP2 DNA Methylation Profile Following Neoadjuvant Therapy in Colorectal Cancer Patients with Different Grades of BMI

    Get PDF
    The relationship between body weight and different cancers is now well-recognized and among such cancers, colorectal cancer (CRC) is reported most frequently. Our group recently published findings, through an epigenome-wide association study, suggesting that body mass index (BMI) could act as a relevant risk factor in the CRC. In addition, aberrant SFRP2 methylation is one of the major mechanisms for Wnt signaling activation in CRC. Conversely, neoadjuvant chemo-radiotherapy appears to alter the rectal cancer epigenome. This study was aimed to evaluate the effect of obesity, measured by BMI, on the methylation of SFRP2 in tumor samples of patients with CRC. Non-treated CRC patients and CRC patients treated with pre-operative neoadjuvant therapy from 2011 to 2013 were included and classified by BMI 25.0 kg/m2. SFRP2 DNA methylation in tumor samples was measured by pyrosequencing. Our findings suggest a possible interaction between SFRP2 methylation levels and BMI in CRC tumor samples. The correlation of SFRP2 hypomethylation with an elevated BMI was stronger within the non-treated CRC patient group than within the treated CRC patient group. We have successfully demonstrated that the beneficial association of tumor SFRP2 hypomethylation is dependent on patient BMI in non-treated CRC, suggesting a possible tumor suppressor role for SFRP2 in overweight and obese patients. Additional studies of clinical pathologies would be necessary to strengthen these preliminary resultsThis study was supported by “Centros de Investigación En Red” (CIBER, CB06/03/0018) of the “Instituto de Salud Carlos III” (ISCIII) and a grant from ISCIII (PI8/01399) and it was co-financed by the European Regional Development Fund (FEDER). M.M.G. was the recipient of the Nicolas Monardes Program from the “Servicio Andaluz de Salud, Junta de Andalucía”, Spain (RC-0001-2018 and C-0029-2014). S.M. was the recipient of the Nicolas Monardes Program from the “Servicio Andaluz de Salud, Junta de Andalucía”, Spain (C-0050-2017). A.B.C. was funded by a research contract “Miguel Servet” (CP17/00088) from the ISCIII. A.C.-M. was recipient of an FPU grant from Education Ministry, Madrid, SpainS
    • 

    corecore