121 research outputs found
Simultaneously Hermaphroditic Shrimp Use Lipophilic Cuticular Hydrocarbons as Contact Sex Pheromones
Successful mating is essentially a consequence of making the right choices at the correct time. Animals use specific strategies to gain information about a potential mate, which is then applied to decision-making processes. Amongst the many informative signals, odor cues such as sex pheromones play important ecological roles in coordinating mating behavior, enabling mate and kin recognition, qualifying mate choice, and preventing gene exchange among individuals from different populations and species. Despite overwhelming behavioral evidence, the chemical identity of most cues used in aquatic organisms remains unknown and their impact and omnipresence have not been fully recognized. In many crustaceans, including lobsters and shrimps, reproduction happens through a cascade of events ranging from initial attraction to formation of a mating pair eventually leading to mating. We examined the hypothesis that contact pheromones on the female body surface of the hermaphroditic shrimp Lysmata boggessi are of lipophilic nature, and resemble insect cuticular hydrocarbon contact cues. Via chemical analyses and behavioural assays, we show that newly molted euhermaphrodite-phase shrimp contain a bouquet of odor compounds. Of these, (Z)-9-octadecenamide is the key odor with hexadecanamide and methyl linoleate enhancing the bioactivity of the pheromone blend. Our results show that in aquatic systems lipophilic, cuticular hydrocarbon contact sex pheromones exist; this raises questions on how hydrocarbon contact signals evolved and how widespread these are in the marine environment
Two years of satellite-based carbon dioxide emission quantification at the world's largest coal-fired power plants
Carbon dioxide (CO2) emissions from combustion sources are uncertain in many places across the globe. Satellites have the ability to detect and quantify emissions from large CO2 point sources, including coal-fired power plants. In this study, we routinely made observations with the PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite imaging spectrometer and the Orbiting Carbon Observatory-3 (OCO-3) instrument aboard the International Space Station at over 30 coal-fired power plants between 2021 and 2022. CO2 plumes were detected in 50â% of the acquired PRISMA scenes, which is consistent with the combined influence of viewing parameters on detection (solar illumination and surface reflectance) and unknown factors (e.g., daily operational status). We compare satellite-derived emission rates to in situ stack emission observations and find average agreement to within 27â% for PRISMA and 30â% for OCO-3, although more observations are needed to robustly characterize the error. We highlight two examples of fusing PRISMA with OCO-2 and OCO-3 observations in South Africa and India. For India, we acquired PRISMA and OCO-3 observations on the same day and used the high-spatial-resolution capability of PRISMA (30âm spatial/pixel resolution) to partition relative contributions of two distinct emitting power plants to the net emission. Although an encouraging start, 2Â years of observations from these satellites did not produce sufficient observations to estimate annual average emission rates within low (<15â%) uncertainties. However, as the constellation of CO2-observing satellites is poised to significantly improve in the coming decade, this study offers an approach to leverage multiple observation platforms to better quantify and characterize uncertainty for large anthropogenic emission sources.</p
Generalization Mediates Sensitivity to Complex Odor Features in the Honeybee
Animals use odors as signals for mate, kin, and food recognition, a strategy which appears ubiquitous and successful despite the high intrinsic variability of naturally-occurring odor quantities. Stimulus generalization, or the ability to decide that two objects, though readily distinguishable, are similar enough to afford the same consequence [1], could help animals adjust to variation in odor signals without losing sensitivity to key inter-stimulus differences. The present study was designed to investigate whether an animal's ability to generalize learned associations to novel odors can be influenced by the nature of the associated outcome. We use a classical conditioning paradigm for studying olfactory learning in honeybees [2] to show that honeybees conditioned on either a fixed- or variable-proportion binary odor mixture generalize learned responses to novel proportions of the same mixture even when inter-odor differences are substantial. We also show that the resulting olfactory generalization gradients depend critically on both the nature of the stimulus-reward paradigm and the intrinsic variability of the conditioned stimulus. The reward dependency we observe must be cognitive rather than perceptual in nature, and we argue that outcome-dependent generalization is necessary for maintaining sensitivity to inter-odor differences in complex olfactory scenes
Deceleration during 'real life' motor vehicle collisions â a sensitive predictor for the risk of sustaining a cervical spine injury?
<p>Abstract</p> <p>Background</p> <p>The predictive value of trauma impact for the severity of whiplash injuries has mainly been investigated in sled- and crash-test studies. However, very little data exist for real-life accidents. Therefore, the predictive value of the trauma impact as assessed by the change in velocity of the car due to the collision (ÎV) for the resulting cervical spine injuries were investigated in 57 cases after real-life car accidents.</p> <p>Methods</p> <p>ÎV was determined for every car and clinical findings related to the cervical spine were assessed and classified according to the Quebec Task Force (QTF).</p> <p>Results</p> <p>In our study, 32 (56%) subjects did not complain about symptoms and were therefore classified as QTF grade 0; 25 (44%) patients complained of neck pain: 8 (14%) were classified as QTF grade I, 6 (10%) as QTF grade II, and 11 (19%) as QTF grade IV. Only a slight correlation (r = 0.55) was found between the reported pain and ÎV. No relevant correlation was found between ÎV and the neck disability index (r = 0.46) and between ÎV and the QTF grade (r = 0.45) for any of the collision types. There was no ÎV threshold associated with acceptable sensitivity and specificity for the prognosis of a cervical spine injury.</p> <p>Conclusion</p> <p>The results of this study indicate that ÎV is not a conclusive predictor for cervical spine injury in real-life motor vehicle accidents. This is of importance for surgeons involved in medicolegal expertise jobs as well as patients who suffer from whiplash-associated disorders (WADs) after motor vehicle accidents.</p> <p>Trial registration</p> <p>The study complied with applicable German law and with the principles of the Helsinki Declaration and was approved by the institutional ethics commission.</p
New Approach to Teaching Japanese Pronunciation in the Digital Era - Challenges and Practices
Pronunciation has been a black hole in the L2 Japanese classroom on account of a lack of class time, teacher\u2019s confidence, and consciousness of the need to teach pronunciation, among other reasons. The absence of pronunciation instruction is reported to result in fossilized pronunciation errors, communication problems, and learner frustration. With an intention of making a contribution to improve such circumstances, this paper aims at three goals. First, it discusses the importance, necessity, and e ectiveness of teaching prosodic aspects of Japanese pronunciation from an early stage in acquisition. Second, it shows that Japanese prosody is challenging because of its typological rareness, regardless of the L1 backgrounds of learners. Third and finally, it introduces a new approach to teaching L2 pronunciation with the goal of developing L2 comprehensibility by focusing on essential prosodic features, which is followed by discussions on key issues concerning how to implement the new approach both inside and outside the classroom in the digital era
Tree Resin Composition, Collection Behavior and Selective Filters Shape Chemical Profiles of Tropical Bees (Apidae: Meliponini)
The diversity of species is striking, but can be far exceeded by the chemical diversity of compounds collected, produced or used by them. Here, we relate the specificity of plant-consumer interactions to chemical diversity applying a comparative network analysis to both levels. Chemical diversity was explored for interactions between tropical stingless bees and plant resins, which bees collect for nest construction and to deter predators and microbes. Resins also function as an environmental source for terpenes that serve as appeasement allomones and protection against predators when accumulated on the bees' body surfaces. To unravel the origin of the bees' complex chemical profiles, we investigated resin collection and the processing of resin-derived terpenes. We therefore analyzed chemical networks of tree resins, foraging networks of resin collecting bees, and their acquired chemical networks. We revealed that 113 terpenes in nests of six bee species and 83 on their body surfaces comprised a subset of the 1,117 compounds found in resins from seven tree species. Sesquiterpenes were the most variable class of terpenes. Albeit widely present in tree resins, they were only found on the body surface of some species, but entirely lacking in others. Moreover, whereas the nest profile of Tetragonula melanocephala contained sesquiterpenes, its surface profile did not. Stingless bees showed a generalized collecting behavior among resin sources, and only a hitherto undescribed species-specific âfilteringâ of resin-derived terpenes can explain the variation in chemical profiles of nests and body surfaces from different species. The tight relationship between bees and tree resins of a large variety of species elucidates why the bees' surfaces contain a much higher chemodiversity than other hymenopterans
Where are we now with European forest multi-taxon biodiversity and where can we head to?
The European biodiversity and forest strategies rely on forest sustainable management (SFM) to conserve forest biodiversity. However, current sustainability assessments hardly account for direct biodiversity indicators. We focused on forest multi-taxon biodiversity to: i) gather and map the existing information; ii) identify knowledge and research gaps; iii) discuss its research potential. We established a research network to fit data on species, standing trees, lying deadwood and sampling unit description from 34 local datasets across 3591 sampling units. A total of 8724 species were represented, with the share of common and rare species varying across taxonomic classes: some included many species with several rare ones (e.g., Insecta); others (e.g., Bryopsida) were represented by few common species. Tree-related structural attributes were sampled in a subset of sampling units (2889; 2356; 2309 and 1388 respectively for diameter, height, deadwood and microhabitats). Overall, multi-taxon studies are biased towards mature forests and may underrepresent the species related to other developmental phases. European forest compositional categories were all represented, but beech forests were over-represented as compared to thermophilous and boreal forests. Most sampling units (94%) were referred to a habitat type of conservation concern. Existing information may support European conservation and SFM strategies in: (i) methodological harmonization and coordinated monitoring; (ii) definition and testing of SFM indicators and thresholds; (iii) data-driven assessment of the effects of environmental and management drivers on multi-taxon forest biological and functional diversity, (iv) multi-scale forest monitoring integrating in-situ and remotely sensed information
- âŠ