363 research outputs found

    Index

    Get PDF
    The interest in relativistic beam-plasma instabilities has been greatly rejuvenated over the past two decades by novel concepts in laboratory and space plasmas. Recent advances in this long-standing field are here reviewed from both theoretical and numerical points of view. The primary focus is on the two-dimensional spectrum of unstable electromagnetic waves growing within relativistic, unmagnetized, and uniform electron beam-plasma systems. Although the goal is to provide a unified picture of all instability classes at play, emphasis is put on the potentially dominant waves propagating obliquely to the beam direction, which have received little attention over the years. First, the basic derivation of the general dielectric function of a kinetic relativistic plasma is recalled. Next, an overview of two-dimensional unstable spectra associated with various beam-plasma distribution functions is given. Both cold-fluid and kinetic linear theory results are reported, the latter being based on waterbag and Maxwell–Jüttner model distributions. The main properties of the competing modes (developing parallel, transverse, and oblique to the beam) are given, and their respective region of dominance in the system parameter space is explained. Later sections address particle-in-cell numerical simulations and the nonlinear evolution of multidimensional beam-plasma systems. The elementary structures generated by the various instability classes are first discussed in the case of reduced-geometry systems. Validation of linear theory is then illustrated in detail for large-scale systems, as is the multistaged character of the nonlinear phase. Finally, a collection of closely related beam-plasma problems involving additional physical effects is presented, and worthwhile directions of future research are outlined.Original Publication: Antoine Bret, Laurent Gremillet and Mark Eric Dieckmann, Multidimensional electron beam-plasma instabilities in the relativistic regime, 2010, Physics of Plasmas, (17), 12, 120501-1-120501-36. http://dx.doi.org/10.1063/1.3514586 Copyright: American Institute of Physics http://www.aip.org/</p

    Diffusive Shock Acceleration with Magnetic Amplification by Non-resonant Streaming Instability in SNRs

    Full text link
    We investigate the diffusive shock acceleration in the presence of the non-resonant streaming instability introduced by Bell (2004). The numerical MHD simulations of the magnetic field amplification combined with the analytical treatment of cosmic ray acceleration permit us to calculate the maximum energy of particles accelerated by high-velocity supernova shocks. The estimates for Cas A, Kepler, SN1006, and Tycho historical supernova remnants are given. We also found that the amplified magnetic field is preferentially oriented perpendicular to the shock front downstream of the fast shock. This explains the origin of the radial magnetic fields observed in young supernova remnants.Comment: 18 pages, 9 figures, accepted to Ap

    High energy cosmic-rays: puzzles, models, and giga-ton neutrino telescopes

    Full text link
    The existence of cosmic rays of energies exceeding 10^20 eV is one of the mysteries of high energy astrophysics. The spectrum and the high energy to which it extends rule out almost all suggested source models. The challenges posed by observations to models for the origin of high energy cosmic rays are reviewed, and the implications of recent new experimental results are discussed. Large area high energy cosmic ray detectors and large volume high energy neutrino detectors currently under construction may resolve the high energy cosmic ray puzzle, and shed light on the identity and physics of the most powerful accelerators in the universe.Comment: 12 pages, 7 figures; Summary of review talk, PASCOS 03 (Mumbai, India

    Nonthermal Emission from a Supernova Remnant in a Molecular Cloud

    Get PDF
    In evolved supernova remnants (SNRs) interacting with molecular clouds, such as IC 443, W44, and 3C391, a highly inhomogeneous structure consisting of a forward shock of moderate Mach number, a cooling layer, a dense radiative shell and an interior region filled with hot tenuous plasma is expected. We present a kinetic model of nonthermal electron injection, acceleration and propagation in that environment and find that these SNRs are efficient electron accelerators and sources of hard X- and gamma-ray emission. The energy spectrum of the nonthermal electrons is shaped by the joint action of first and second order Fermi acceleration in a turbulent plasma with substantial Coulomb losses. Bremsstrahlung, synchrotron, and inverse Compton radiation of the nonthermal electrons produce multiwavelength photon spectra in quantitative agreement with the radio and the hard emission observed by ASCA and EGRET from IC 443. We distinguish interclump shock wave emission from molecular clump shock wave emission accounting for a complex structure of molecular cloud. Spatially resolved X- and gamma- ray spectra from the supernova remnants IC 443, W44, and 3C391 as might be observed with BeppoSAX, Chandra XRO, XMM, INTEGRAL and GLAST would distinguish the contribution of the energetic lepton component to the gamma-rays observed by EGRET.Comment: 14 pages, 4 figure, Astrophysical Journal, v.538, 2000 (in press

    How Can Schools Support Parents' Engagement in their Children's Learning? Evidence from Research and Practice

    Get PDF
    This is the final version. Available from the Education Endowment Foundation via the link in this recordEducation Endowment Foundatio

    A multifrequency study of giant radio sources-II. Spectral ageing analysis of the lobes of selected sources

    Full text link
    Multifrequency observations with the GMRT and the VLA are used to determine the spectral breaks in consecutive strips along the lobes of a sample of selected giant radio sources (GRSs) in order to estimate their spectral ages. The maximum spectral ages estimated for the detected radio emission in the lobes of our sources range from ∼\sim6 to 36 Myr with a median value of ∼\sim20 Myr using the classical equipartition fields. Using the magnetic field estimates from the Beck & Krause formalism the spectral ages range from ∼\sim5 to 38 Myr with a median value of ∼\sim22 Myr. These ages are significantly older than smaller sources. In all but one source (J1313+6937) the spectral age gradually increases with distance from the hotspot regions, confirming that acceleration of the particles mainly occurs in the hotspots. Most of the GRSs do not exhibit zero spectral ages in the hotspots, as is the case in earlier studies of smaller sources. This is likely to be largely due to contamination by more extended emission due to relatively modest resolutions. The injection spectral indices range from ∼\sim0.55 to 0.88 with a median value of ∼\sim0.6. We discuss these values in the light of theoretical expectations, and show that the injection spectral index appears to be correlated with luminosity and/or redshift as well as with linear size.Comment: 12 Pages, 13 Figures, 9 Tables, Accepted for publication in MNRA

    Nonthermal Electrons at High Mach Number Shocks: Electron Shock Surfing Acceleration

    Get PDF
    We study the suprathermal electron acceleration mechanism in a perpendicular magnetosonic shock wave in a high Mach number regime by using a particle-in-cell simulation. We find that shock surfing/surftron acceleration producing the suprathermal electrons occurs in the shock transition region where a series of large amplitude electrostatic solitary waves (ESWs) are excited by Buneman instability under the interaction between the reflected ions and the incoming electrons. It is shown that the electrons are likely to be trapped by ESWs, and during the trapping phase they can be effectively accelerated by the shock motional/convection electric field. We discuss that suprathermal electrons can be accelerated up to mic2(v0/c)m_i c^2 (v_0/c), where mic2m_i c^2 is the ion rest mass energy and v0v_0 is the shock upstream flow velocity. Furthermore, some of these suprathermal electrons may be effectively trapped for infinitely long time when Alfv\'en Mach number MAM_A exceeds several 10, and they are accelerated up to the shock potential energy determined by the global shock size.Comment: 21 pages, 6 figure

    Solar interacting protons versus interplanetary protons in the core plus halo model of diffusive shock acceleration and stochastic re-acceleration

    Get PDF
    With the first observations of solar γ-rays from the decay of pions, the relationship of protons producing ground level enhancements (GLEs) on the Earth to those of similar energies producing the γ-rays on the Sun has been debated. These two populations may be either independent and simply coincident in large flares, or they may be, in fact, the same population stemming from a single accelerating agent and jointly distributed at the Sun and also in space. Assuming the latter, we model a scenario in which particles are accelerated near the Sun in a shock wave with a fraction transported back to the solar surface to radiate, while the remainder is detected at Earth in the form of a GLE. Interplanetary ions versus ions interacting at the Sun are studied for a spherical shock wave propagating in a radial magnetic field through a highly turbulent radial ray (the acceleration core) and surrounding weakly turbulent sector in which the accelerated particles can propagate toward or away from the Sun. The model presented here accounts for both the first-order Fermi acceleration at the shock front and the second-order, stochastic re-acceleration by the turbulence enhanced behind the shock. We find that the re-acceleration is important in generating the γ-radiation and we also find that up to 10% of the particle population can find its way to the Sun as compared to particles escaping to the interplanetary space

    Review of evidence on implementation in education

    Get PDF
    This is the final version. Available from the Education Endowment Foundation via the link in this recordBackground ‘Implementation in education’ refers to active and planned efforts to introduce and sustain an approach in schools. It therefore involves making, and acting on, evidence-informed decisions. There is substantial evidence indicating that quality implementation amplifies the effectiveness of a range of school-based approaches. However, implementation in schools is complex and there is a need to know more about how to do implementation in schools well. It is important to understand how new approaches can be selected and put in place in school settings to improve outcomes for all pupils, including those from more disadvantaged backgrounds. There have been few reviews of research to date that take a holistic view of implementation across multiple intervention and school types. The EEF commissioned this evidence review to underpin an update to its guidance report ‘Putting Evidence to Work: A School’s Guide to Implementation’. Aims of the evidence review The evidence review aims to address two overarching questions: 1. How should school leaders and teachers understand implementation and how should they implement evidence informed approaches in their context to have the best chance of improving all pupils’ outcomes? 2. What is the relationship between content (‘what’) and process (‘how’) within school implementation? To address these two questions the evidence review is organised into four inter-related ‘work packages’. Because schools are complex, adaptive systems involving a diverse range of individuals, investigating implementation in schools needs to focus on context to understand what works for whom, where, and why. This realist perspective is reflected in our approach throughout
    • …
    corecore