124 research outputs found

    Development of a Force-Based Ream Vector Measurement System For Glenoid Reaming Simulation

    Get PDF
    Glenoid reaming is a technically challenging step during total shoulder arthroplasty surgery that may be improved through frequent practice and exposure to simulation training. At our institution, a vibration haptic glenoid reaming simulator is being developed that simulates the vibrations felt during glenoid reaming. This thesis presents the development of a force-based reamer vector measurement system that allows the simulator to measure the user’s net applied force and reamer angle of approach. This capability allows for the simulation of eccentric reaming maneuvers commonly used to adjust the glenoid orientation. The system error was characterized and evaluated using a robot to operate a surgical reaming tool. Finally, a study was performed that assessed the ability of surgeons to correct glenoid retroversion while using the haptic vibration simulator. Overall, the surgeons were able to correct glenoid orientation within 1 degree of the target orientation, according to the simulator’s reaming vector measurement system

    Numerical calculation of strong-field laser-atom interaction: An approach with perfect reflection-free radiation boundary conditions

    Get PDF
    The time-dependent, single-particle Schrodinger equation with a finite-range potential is solved numerically on a three-dimensional spherical domain. In order to correctly account for outgoing waves, perfect reflection-free radiation boundary conditions are used on the surface of a sphere. These are computationally most effective if the particle wavefunction is expanded in the set of spherical harmonics and computations are performed in the Kramers-Henneberger accelerated frame. The method allows one to solve the full ionization dynamics in intense laser fields within a small region of atomic dimensions

    Neural stem cells from protein tyrosine phosphatase sigma knockout mice generate an altered neuronal phenotype in culture

    Get PDF
    BACKGROUND: The LAR family Protein Tyrosine Phosphatase sigma (PTPσ) has been implicated in neuroendocrine and neuronal development, and shows strong expression in specific regions within the CNS, including the subventricular zone (SVZ). We established neural stem cell cultures, grown as neurospheres, from the SVZ of PTPσ knockout mice and sibling controls to determine if PTPσ influences the generation and the phenotype of the neuronal, astrocyte and oligodendrocyte cell lineages. RESULTS: The neurospheres from the knockout mice acquired heterogeneous developmental characteristics and they showed similar morphological characteristics to the age matched siblings. Although Ptprs expression decreases as a function of developmental age in vivo, it remains high with the continual renewal and passage of the neurospheres. Stem cells, progenitors and differentiated neurons, astrocytes and oligodendrocytes all express the gene. While no apparent differences were observed in developing neurospheres or in the astrocytes and oligodendrocytes from the PTPσ knockout mice, the neuronal migration patterns and neurites were altered when studied in culture. In particular, neurons migrated farther from the neurosphere centers and the neurite outgrowth exceeded the length of the neuronal processes from age matched sibling controls. CONCLUSION: Our results imply a specific role for PTPσ in the neuronal lineage, particularly in the form of inhibitory influences on neurite outgrowth, and demonstrate a role for tyrosine phosphatases in neuronal stem cell differentiation

    Observations and Models of the Fast and Slow Solar Wind

    No full text

    FRA2A is a CGG repeat expansion associated with silencing of AFF3

    Get PDF
    Folate-sensitive fragile sites (FSFS) are a rare cytogenetically visible subset of dynamic mutations. Of the eight molecularly characterized FSFS, four are associated with intellectual disability (ID). Cytogenetic expression results from CGG tri-nucleotide-repeat expansion mutation associated with local CpG hypermethylation and transcriptional silencing. The best studied is the FRAXA site in the FMR1 gene, where large expansions cause fragile X syndrome, the most common inherited ID syndrome. Here we studied three families with FRA2A expression at 2q11 associated with a wide spectrum of neurodevelopmental phenotypes. We identified a polymorphic CGG repeat in a conserved, brain-active alternative promoter of the AFF3 gene, an autosomal homolog of the X-linked AFF2/FMR2 gene: Expansion of the AFF2 CGG repeat causes FRAXE ID. We found that FRA2A-expressing individuals have mosaic expansions of the AFF3 CGG repeat in the range of several hundred repeat units. Moreover, bisulfite sequencing and pyrosequencing both suggest AFF3 promoter hypermethylation. cSNP-analysis demonstrates monoallelic expression of the AFF3 gene in FRA2A carriers thus predicting that FRA2A expression results in functional haploinsufficiency for AFF3 at least in a subset of tissues. By whole-mount in situ hybridization the mouse AFF3 ortholog shows strong regional expression in the developing brain, somites and limb buds in 9.5-12.5dpc mouse embryos. Our data suggest that there may be an association between FRA2A and a delay in the acquisition of motor and language skills in the families studied here. However, additional cases are required to firmly establish a causal relationship

    XMM-Newton confirmation of Soft X-ray excess emission in clusters of galaxies - the discovery of O VII emission from an extended warm baryonic component

    Get PDF
    We investigate a sample of 14 clusters of galaxies observed with XMM-Newton in a search for soft X-ray excess emission. In five of these clusters a significant soft excess is evident. This soft X-ray excess is compared with the thermal emission from both the hot intracluster gas and any cooling (flow) gas that may be present. A warm (kT=0.2 keV), extended (several Mpc), plasma component is particularly clear in the outer parts of the cluster, where the normal cluster X-ray emission is weak. This warm component causes both a thermal soft X-ray excess at low energies (below 0.4-0.5 keV), as well as O VII line emission with a redshift consistent with a cluster origin, and not easily interpreted as Galactic foreground emission. The intensity of this component is commensurate with what has been measured before with the ROSAT PSPC in the 1/4 keV band. We attribute this component to emission from intercluster filaments of the Warm-Hot Intergalactic Medium in the vicinity of these clusters. For the central regions of clusters the detection of lines in the soft X-ray spectrum is more difficult, due to the predominance of the X-ray emitting hot plasma there, hence we cannot discriminate between the thermal and nonthermal origin of the soft excess, leaving several options open. These include thermal emission from warm filaments seen in projection in front of or behind the cluster center, thermal or nonthermal emission in the cluster core itself related to magnetic reconnection, or Inverse Compton emission from the cosmic microwave background on relativistic electrons.Comment: 18 pages, 24 figures, accepted for publication in Astronomy and Astrophysic
    corecore