3,850 research outputs found

    From simplicial Chern-Simons theory to the shadow invariant II

    Full text link
    This is the second of a series of papers in which we introduce and study a rigorous "simplicial" realization of the non-Abelian Chern-Simons path integral for manifolds M of the form M = Sigma x S1 and arbitrary simply-connected compact structure groups G. More precisely, we introduce, for general links L in M, a rigorous simplicial version WLO_{rig}(L) of the corresponding Wilson loop observable WLO(L) in the so-called "torus gauge" by Blau and Thompson (Nucl. Phys. B408(2):345-390, 1993). For a simple class of links L we then evaluate WLO_{rig}(L) explicitly in a non-perturbative way, finding agreement with Turaev's shadow invariant |L|.Comment: 53 pages, 1 figure. Some minor changes and corrections have been mad

    Altruistic Contents of Quantum Prisoner's Dilemma

    Full text link
    We examine the classical contents of quantum games. It is shown that a quantum strategy can be interpreted as a classical strategies with effective density-dependent game matrices composed of transposed matrix elements. In particular, successful quantum strategies in dilemma games are interpreted in terms of a symmetrized game matrix that corresponds to an altruistic game plan.Comment: Revised according to publisher's request: 4 pgs, 2 fgs, ReVTeX4. For more info, go to http://www.mech.kochi-tech.ac.jp/cheon

    Einstein Radii from Binary Lensing Events

    Get PDF
    We show that the Einstein ring radius and transverse speed of a lens projected on the source plane, r^e\hat{r}_{\rm e} and v^\hat{v}, can be determined from the light curve of a binary-source event, followed by the spectroscopic determination of the orbital elements of the source stars. The determination makes use of the same principle that allows one to measure the Einstein ring radii from finite-source effects. For the case when the orbital period of the source stars is much longer than the Einstein time scale, P≫teP\gg t_{\rm e}, there exists a single two-fold degeneracy in determining r^e\hat{r}_{\rm e}. However, when Pâ‰ČteP \lesssim t_{\rm e} the degeneracy can often be broken by making use of the binary-source system's orbital motion. %Once r^e\hat{r}_{\rm e}, and thus v^\hat{v} are determined, one can %distinguish self-lensing events in the Large Magellanic Cloud %from Galactic halo events. For an identifiable 8\% of all lensing events seen toward the Large Magellanic Cloud (LMC), one can unambiguously determine whether the lenses are Galactic, or whether they lie in the LMC itself. The required observations can be made after the event is over and could be carried out for the ∌8\sim 8 events seen by Alcock et al.\ and Aubourg et al.. In addition, we propose to include eclipsing binaries as sources for gravitational lensing experiments.Comment: 18 pages, revised version, submitted to Ap

    A Proper Motion Survey for White Dwarfs with the Wide Field Planetary Camera 2

    Full text link
    We have performed a search for halo white dwarfs as high proper motion objects in a second epoch WFPC2 image of the Groth-Westphal strip. We identify 24 high proper motion objects with mu > 0.014 ''/yr. Five of these high proper motion objects are identified as strong white dwarf candidates on the basis of their position in a reduced proper motion diagram. We create a model of the Milky Way thin disk, thick disk and stellar halo and find that this sample of white dwarfs is clearly an excess above the < 2 detections expected from these known stellar populations. The origin of the excess signal is less clear. Possibly, the excess cannot be explained without invoking a fourth galactic component: a white dwarf dark halo. We present a statistical separation of our sample into the four components and estimate the corresponding local white dwarf densities using only the directly observable variables, V, V-I, and mu. For all Galactic models explored, our sample separates into about 3 disk white dwarfs and 2 halo white dwarfs. However, the further subdivision into the thin and thick disk and the stellar and dark halo, and the subsequent calculation of the local densities are sensitive to the input parameters of our model for each Galactic component. Using the lowest mean mass model for the dark halo we find a 7% white dwarf halo and six times the canonical value for the thin disk white dwarf density (at marginal statistical significance), but possible systematic errors due to uncertainty in the model parameters likely dominate these statistical error bars. The white dwarf halo can be reduced to around 1.5% of the halo dark matter by changing the initial mass function slightly. The local thin disk white dwarf density in our solution can be made consistent with the canonical value by assuming a larger thin disk scaleheight of 500 pc.Comment: revised version, accepted by ApJ, results unchanged, discussion expande

    Social games in a social network

    Full text link
    We study an evolutionary version of the Prisoner's Dilemma game, played by agents placed in a small-world network. Agents are able to change their strategy, imitating that of the most successful neighbor. We observe that different topologies, ranging from regular lattices to random graphs, produce a variety of emergent behaviors. This is a contribution towards the study of social phenomena and transitions governed by the topology of the community

    Freezing and Slow Evolution in a Constrained Opinion Dynamics Model

    Full text link
    We study opinion formation in a population that consists of leftists, centrists, and rightist. In an interaction between neighboring agents, a centrist and a leftist can become both centrists or leftists (and similarly for a centrist and a rightist). In contrast, leftists and rightists do not affect each other. The initial density of centrists rho_0 controls the evolution. With probability rho_0 the system reaches a centrist consensus, while with probability 1-rho_0 a frozen population of leftists and rightists results. In one dimension, we determine this frozen state and the opinion dynamics by mapping the system onto a spin-1 Ising model with zero-temperature Glauber kinetics. In the frozen state, the length distribution of single-opinion domains has an algebraic small-size tail x^{-2(1-psi)} and the average domain size grows as L^{2*psi}, where L is the system length. The approach to this frozen state is governed by a t^{-psi} long-time tail with psi-->2*rho_0/pi as rho_0-->0.Comment: 4 pages, 6 figures, 2-column revtex4 format, for submission to J. Phys. A. Revision contains lots of stylistic changes and 1 new result; the main conclusions are the sam

    The Semiclassical Limit for SU(2)SU(2) and SO(3)SO(3) Gauge Theory on the Torus

    Full text link
    We prove that for SU(2)SU(2) and SO(3)SO(3) quantum gauge theory on a torus, holonomy expectation values with respect to the Yang-Mills measure d\mu_T(\o) =N_T^{-1}e^{-S_{YM}(\o)/T}[{\cal D}\o] converge, as T↓0T\downarrow 0, to integrals with respect to a symplectic volume measure ÎŒ0\mu_0 on the moduli space of flat connections on the bundle. These moduli spaces and the symplectic structures are described explicitly.Comment: 18 page

    Opinion dynamics: rise and fall of political parties

    Full text link
    We analyze the evolution of political organizations using a model in which agents change their opinions via two competing mechanisms. Two agents may interact and reach consensus, and additionally, individual agents may spontaneously change their opinions by a random, diffusive process. We find three distinct possibilities. For strong diffusion, the distribution of opinions is uniform and no political organizations (parties) are formed. For weak diffusion, parties do form and furthermore, the political landscape continually evolves as small parties merge into larger ones. Without diffusion, a pattern develops: parties have the same size and they possess equal niches. These phenomena are analyzed using pattern formation and scaling techniques.Comment: 5 pages, 5 figure

    Effects of Mass Media and Cultural Drift in a Model for Social Influence

    Full text link
    In the context of an extension of Axelrod's model for social influence, we study the interplay and competition between the cultural drift, represented as random perturbations, and mass media, introduced by means of an external homogeneous field. Unlike previous studies [J. C. Gonz\'alez-Avella {\it et al}, Phys. Rev. E {\bf 72}, 065102(R) (2005)], the mass media coupling proposed here is capable of affecting the cultural traits of any individual in the society, including those who do not share any features with the external message. A noise-driven transition is found: for large noise rates, both the ordered (culturally polarized) phase and the disordered (culturally fragmented) phase are observed, while, for lower noise rates, the ordered phase prevails. In the former case, the external field is found to induce cultural ordering, a behavior opposite to that reported in previous studies using a different prescription for the mass media interaction. We compare the predictions of this model to statistical data measuring the impact of a mass media vasectomy promotion campaign in Brazil.Comment: 10 pages, 3 figures; minor changes; added references. To appear in IJMP

    Remarks on the naturality of quantization

    Full text link
    Hamiltonian quantization of an integral compact symplectic manifold M depends on a choice of compatible almost complex structure J. For open sets U in the set of compatible almost complex structures and small enough values of Planck's constant, the Hilbert spaces of the quantization form a bundle over U with a natural connection. In this paper we examine the dependence of the Hilbert spaces on the choice of J, by computing the semi-classical limit of the curvature of this connection. We also show that parallel transport provides a link between the action of the group Symp(M) of symplectomorphisms of M and the Schrodinger equation.Comment: 20 page
    • 

    corecore