79 research outputs found

    Point-to-point readout for the ALICE EMCal detector

    Get PDF
    AbstractIt is anticipated that the LHC will deliver Pb+Pb collisions at a minimum bias interaction rate of about 50kHz after the second long shutdown of the LHC in 2018. This will be roughly two orders of magnitude greater than the current data recording rate capability of the ALICE experiment. Therefore a major upgrade of the ALICE detector is planned for the next shutdown to enable ALICE to record data at the full Pb+Pb minimum bias interaction rate delivered by the LHC. A new point-to-point readout system for the electromagnetic calorimeter (EMCal) of ALICE has been developed, to replace the legacy readout bus, that essentially accomplishes this goal, and is being installed during the current LHC shutdown (2013–2014). The new readout uses the existing EMCal front end electronics yet provides more than an order of magnitude decrease in the readout time, to about 21μs, with modest cost and effort

    Highlights from PHENIX - II

    Full text link
    This contribution highlights recent results from the PHENIX Collaboration at RHIC with emphasis on those obtained through lepton and photon measurements in PHENIX.Comment: 9 pages, 13 figures, presented at the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions - "Quark Matter 2008", Jaipur, India, February 4-10, 200

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Direct Photons as a Probe of Deconfinement in Heavy Ion Collisions

    No full text

    Characterization of a new charge sensitive preamplifier (CSP) for the electromagnetic calorimeters of the ALICE experiment

    No full text
    The ALICE calorimeters PHOS and EMCal (including its extension DCal) are based on Avalanche Photo-Diode (APD) photosensors with Charge Sensitive Preamplifiers (CSPs) for readout of the scintillating elements. A new CSP has been developed on the basis of the design of the PHOS CSP, but modified to meet the requirements of the EMCal and DCal. Modifications were made specifically for a different APD choice with different characteristics, and also with the goals of less noise, faster rise time, and reduced cost. This paper presents a detailed description of the new CSP features and the test results

    Front-end electronics for the ALICE calorimeters

    No full text
    The ALICE calorimeters PHOS and EMCal are based on Avalanche Photo-Diode (APD) photosensors with Charge Sensitive Preamplifiers (CSP) for readout of the scintillating elements. The amplified signals are read out via 32-channel shaper/digitizer front-end electronics (FEE) with 14-bit effective dynamic range. The electronics is based on second order shapers with dual gain for each channel, getting digitized by ALTRO chips. Each APD channel is equipped with an individual 10-bit APD gain adjustment and 2×2 channel clusters generate a 100 ns shaped analog sums output (Fast OR) for the associated Trigger Region Units (TRU). The Fast OR signals are generated by first order shapers with a dynamic range of 12-bit given by the ADC in the TRU cards. Board controller firmware in the FPGA provides local monitoring and configuration of all parameters via the ALICE DCS system. The signal to noise ratio for MIP at 215 MeV is not, vert, similar7 per channel with a noise level of 30 MeV at room temperature for a dynamic range of 80 GeV for PHOS, and the fast-OR RMS noise level is about 75 MeV for a dynamic range of 250 GeV for EMCal

    Hierarchical trigger of the ALICE calorimeters

    No full text
    The trigger of the ALICE electromagnetic calorimeters is implemented in 2 hierarchically connected layers of electronics. In the lower layer, level-0 algorithms search shower energy above threshold in locally confined Trigger Region Units (TRU). The top layer is implemented as a single, global trigger unit that receives the trigger data from all TRUs as input to the level-1 algorithm. This architecture was first developed for the PHOS high pT photon trigger before it was adopted by EMCal also for the jet trigger. TRU units digitize up to 112 analogue input signals from the Front End Electronics (FEE) and concentrate their digital stream in a single FPGA. A charge and time summing algorithm is combined with a peakfinder that suppresses spurious noise and is precise to single LHC bunches. With a peak-to-peak noise level of 150 MeV the linear dynamic range above threshold spans from MIP energies at 215 up to 50 GeV. Local level-0 decisions take less than 600 ns after LHC collisions, upon which all TRUs transfer their level-0 trigger data to the upstream global trigger module which searches within the remaining level-1 latency for high pT gamma showers (PHOS) and/or for Jet cone areas (EMCaL)
    corecore