362 research outputs found

    The calculation of theoretical chromospheric models and predicted OSO 1 spectra

    Get PDF
    Theoretical solar chromospheric and photospheric models are computed for use in analyzing OSO 8 spectra. The Vernazza, Avrett, and Loeser (1976) solar model is updated and self-consistent non-LTE number densities for H I, He I, He II, C I, Mg I, Al I, Si I, and H(-) are produced. These number densities are used in the calculation of a theoretical solar spectrum from 90 to 250 nm, including approximately 7000 lines in non-LTE. More than 60,000 lines of other elements are treated with approximate source functions

    The calculation of theoretical chromospheric models and the interpretation of solar spectra from rockets and spacecraft

    Get PDF
    Models and spectra of sunspots were studied, because they are important to energy balance and variability discussions. Sunspot observations in the ultraviolet region 140 to 168 nn was obtained by the NRL High Resolution Telescope and Spectrograph. Extensive photometric observations of sunspot umbrae and prenumbrae in 10 chanels covering the wavelength region 387 to 3800 nm were made. Cool star opacities and model atmospheres were computed. The Sun is the first testcase, both to check the opacity calculations against the observed solar spectrum, and to check the purely theoretical model calculation against the observed solar energy distribution. Line lists were finally completed for all the molecules that are important in computing statistical opacities for energy balance and for radiative rate calculations in the Sun (except perhaps for sunspots). Because many of these bands are incompletely analyzed in the laboratory, the energy levels are not well enough known to predict wavelengths accurately for spectrum synthesis and for detailed comparison with the observations

    Analysis of OSO data to determine the structure and energy balance of the solar chromosphere

    Get PDF
    A detailed reexamination of the temperature-density structure of the photosphere and low chromosphere shows that the middle and upper chromosphere, which directly emits most of the OSO spectrum, is sensitive to conditions in this underlying region of the atmosphere. A model of this region is based on a unified compilation of all recently published broadband flux and central intensity observations of the solar spectrum from 500 microns in the far infrared to 1220 A in the far ultraviolet. This extensive compilation includes the OSO 4 and 6 observations in the wavelength range 1400 to 1220 A. A model is presented of the quiet solar atmosphere in the height range between the temperature minimum and the upper part of the chromosphere-corona transition region. This model is based on statistical equilibrium calculations of H, He 1, He 2, Si 1, C 1, and other ions

    The role of particle diffusion in the lower transition region: Revised interpretation of emission measures

    Get PDF
    Our energy-balance models of the lower transit ion region were presented in a previous paper (New Models of the Chromosphere and Transition Region). Here we show the influence of particle diffusion on the calculated hydrogen and helium number densities for a given temperature-density model (model C in the preceding paper). We have also solved the statistical equilibrium and radiative transfer equations for a 13-level He I atom (22 radiative transitions) and a 6-level He II ion (15 radiative transitions) together with He III. The resulting He I and He II level-1 number densities and He III density are shown as functions of temperature. Diffusion substantially increases eta(sub HeI) for T greater than 35,000 K and decreases eta(sub HeI) (while increasing eta(sub(HeII)) between 9,000 and 25,000 K. Including the effects of diffusion also increases eta(sub HeIII) for T less than 60,000 K

    The calculation of theoretical chromospheric models and predicted OSO I spectra

    Get PDF
    A computer program was developed which, given a line list and a model atmosphere, computes a solar ultraviolet spectrum, broadens it, plots it together with an observed spectrum, and labels each line. An iterative procedure is utilized. Several of the computed and observed spectra are presented

    SAtlas: Spherical Versions of the Atlas Stellar Atmosphere Program

    Full text link
    Context: The current stellar atmosphere programs still cannot match some fundamental observations of the brightest stars, and with new techniques, such as optical interferometry, providing new data for these stars, additional development of stellar atmosphere codes is required. Aims: To modify the open-source model atmosphere program Atlas to treat spherical geometry, creating a test-bed stellar atmosphere code for stars with extended atmospheres. Methods: The plane-parallel Atlas has been changed by introducing the necessary spherical modifications in the pressure structure, in the radiative transfer and in the temperature correction. Results: Several test models show that the spherical program matches the plane-parallel models in the high surface gravity regime, and matches spherical models computed by Phoenix and by MARCS in the low gravity case.Comment: 10 pages, 10 figures, Accepted for publication in A&

    Small-scale structure and dynamics of the lower solar atmosphere

    Full text link
    The chromosphere of the quiet Sun is a highly intermittent and dynamic phenomenon. Three-dimensional radiation (magneto-)hydrodynamic simulations exhibit a mesh-like pattern of hot shock fronts and cool expanding post-shock regions in the sub-canopy part of the inter-network. This domain might be called "fluctosphere". The pattern is produced by propagating shock waves, which are excited at the top of the convection zone and in the photospheric overshoot layer. New high-resolution observations reveal a ubiquitous small-scale pattern of bright structures and dark regions in-between. Although it qualitatively resembles the picture seen in models, more observations - e.g. with the future ALMA - are needed for thorough comparisons with present and future models. Quantitative comparisons demand for synthetic intensity maps and spectra for the three-dimensional (magneto-)hydrodynamic simulations. The necessary radiative transfer calculations, which have to take into account deviations from local thermodynamic equilibrium, are computationally very involved so that no reliable results have been produced so far. Until this task becomes feasible, we have to rely on careful qualitative comparisons of simulations and observations. Here we discuss what effects have to be considered for such a comparison. Nevertheless we are now on the verge of assembling a comprehensive picture of the solar chromosphere in inter-network regions as dynamic interplay of shock waves and structuring and guiding magnetic fields.Comment: 8 pages, 2 figures, to appear in the proceedings of the IAU Symposium No. 247, Waves & Oscillations in the Solar Atmosphere: Heating and Magneto-Seismology (Venezuela 2007

    Towards a unified definition of solar limb during central eclipses and daily transits

    Full text link
    The diameter of the Sun has been measured using Baily's beads during central eclipses, observed with portable telescopes. A blend of tiny emission lines produced in the first several hundred kilometers above the photosphere gives a light signal which prolonges the light curves of the beads. The simple criterion of light OFF/ON adopted in the previous approaches to define the timing of photosphere's disappearance/reappearance is modified. The technique of the limb darkening function reconstruction from the Baily's beads light curves is introduced here.Comment: 9 pages, 6 figures, Proc. of the 2nd Galileo-Xu Guangqi Meeting, Ventimiglia - Villa Hanbury, Italy, 11-16 July 201
    corecore