1,025 research outputs found

    Coulomb blockade and Non-Fermi-liquid behavior in quantum dots

    Full text link
    The non-Fermi-liquid properties of an ultrasmall quantum dot coupled to a lead and to a quantum box are investigated. Tuning the ratio of the tunneling amplitudes to the lead and box, we find a line of two-channel Kondo fixed points for arbitrary Coulomb repulsion on the dot, governing the transition between two distinct Fermi-liquid regimes. The Fermi liquids are characterized by different values of the conductance. For an asymmetric dot, spin and charge degrees of freedom are entangled: a continuous transition from a spin to a charge two-channel Kondo effect evolves. The crossover temperature to the two-channel Kondo effect is greatly enhanced away from the local-moment regime, making this exotic effect accessible in realistic quantum-dot devices.Comment: 5 figure

    Exponents appearing in heterogeneous reaction-diffusion models in one dimension

    Full text link
    We study the following 1D two-species reaction diffusion model : there is a small concentration of B-particles with diffusion constant DBD_B in an homogenous background of W-particles with diffusion constant DWD_W; two W-particles of the majority species either coagulate (W+WWW+W \longrightarrow W) or annihilate (W+WW+W \longrightarrow \emptyset) with the respective probabilities pc=(q2)/(q1) p_c=(q-2)/(q-1) and pa=1/(q1)p_a=1/(q-1); a B-particle and a W-particle annihilate (W+BW+B \longrightarrow \emptyset) with probability 1. The exponent θ(q,λ=DB/DW)\theta(q,\lambda=D_B/D_W) describing the asymptotic time decay of the minority B-species concentration can be viewed as a generalization of the exponent of persistent spins in the zero-temperature Glauber dynamics of the 1D qq-state Potts model starting from a random initial condition : the W-particles represent domain walls, and the exponent θ(q,λ)\theta(q,\lambda) characterizes the time decay of the probability that a diffusive "spectator" does not meet a domain wall up to time tt. We extend the methods introduced by Derrida, Hakim and Pasquier ({\em Phys. Rev. Lett.} {\bf 75} 751 (1995); Saclay preprint T96/013, to appear in {\em J. Stat. Phys.} (1996)) for the problem of persistent spins, to compute the exponent θ(q,λ)\theta(q,\lambda) in perturbation at first order in (q1)(q-1) for arbitrary λ\lambda and at first order in λ\lambda for arbitrary qq.Comment: 29 pages. The three figures are not included, but are available upon reques

    Time evolution of the reaction front in a subdiffusive system

    Full text link
    Using the quasistatic approximation, we show that in a subdiffusion--reaction system the reaction front xfx_{f} evolves in time according to the formula xftα/2x_{f} \sim t^{\alpha/2}, with α\alpha being the subdiffusion parameter. The result is derived for the system where the subdiffusion coefficients of reactants differ from each other. It includes the case of one static reactant. As an application of our results, we compare the time evolution of reaction front extracted from experimental data with the theoretical formula and we find that the transport process of organic acid particles in the tooth enamel is subdiffusive.Comment: 18 pages, 3 figure

    Complete Exact Solution of Diffusion-Limited Coalescence, A + A -> A

    Full text link
    Some models of diffusion-limited reaction processes in one dimension lend themselves to exact analysis. The known approaches yield exact expressions for a limited number of quantities of interest, such as the particle concentration, or the distribution of distances between nearest particles. However, a full characterization of a particle system is only provided by the infinite hierarchy of multiple-point density correlation functions. We derive an exact description of the full hierarchy of correlation functions for the diffusion-limited irreversible coalescence process A + A -> A.Comment: 4 pages, 2 figures (postscript). Typeset with Revte

    Spectral dimensions of hierarchical scale-free networks with shortcuts

    Full text link
    The spectral dimension has been widely used to understand transport properties on regular and fractal lattices. Nevertheless, it has been little studied for complex networks such as scale-free and small world networks. Here we study the spectral dimension and the return-to-origin probability of random walks on hierarchical scale-free networks, which can be either fractals or non-fractals depending on the weight of shortcuts. Applying the renormalization group (RG) approach to the Gaussian model, we obtain the spectral dimension exactly. While the spectral dimension varies between 11 and 22 for the fractal case, it remains at 22, independent of the variation of network structure for the non-fractal case. The crossover behavior between the two cases is studied through the RG flow analysis. The analytic results are confirmed by simulation results and their implications for the architecture of complex systems are discussed.Comment: 10 pages, 3 figure

    Reaction-diffusion with a time-dependent reaction rate: the single-species diffusion-annihilation process

    Full text link
    We study the single-species diffusion-annihilation process with a time-dependent reaction rate, lambda(t)=lambda_0 t^-omega. Scaling arguments show that there is a critical value of the decay exponent omega_c(d) separating a reaction-limited regime for omega > omega_c from a diffusion-limited regime for omega < omega_c. The particle density displays a mean-field, omega-dependent, decay when the process is reaction limited whereas it behaves as for a constant reaction rate when the process is diffusion limited. These results are confirmed by Monte Carlo simulations. They allow us to discuss the scaling behaviour of coupled diffusion-annihilation processes in terms of effective time-dependent reaction rates.Comment: 11 pages, 9 figures, minor correction

    Determining mean first-passage time on a class of treelike regular fractals

    Full text link
    Relatively general techniques for computing mean first-passage time (MFPT) of random walks on networks with a specific property are very useful, since a universal method for calculating MFPT on general graphs is not available because of their complexity and diversity. In this paper, we present techniques for explicitly determining the partial mean first-passage time (PMFPT), i.e., the average of MFPTs to a given target averaged over all possible starting positions, and the entire mean first-passage time (EMFPT), which is the average of MFPTs over all pairs of nodes on regular treelike fractals. We describe the processes with a family of regular fractals with treelike structure. The proposed fractals include the TT fractal and the Peano basin fractal as their special cases. We provide a formula for MFPT between two directly connected nodes in general trees on the basis of which we derive an exact expression for PMFPT to the central node in the fractals. Moreover, we give a technique for calculating EMFPT, which is based on the relationship between characteristic polynomials of the fractals at different generations and avoids the computation of eigenvalues of the characteristic polynomials. Making use of the proposed methods, we obtain analytically the closed-form solutions to PMFPT and EMFPT on the fractals and show how they scale with the number of nodes. In addition, to exhibit the generality of our methods, we also apply them to the Vicsek fractals and the iterative scale-free fractal tree and recover the results previously obtained.Comment: Definitive version published in Physical Review

    On Matrix Product Ground States for Reaction-Diffusion Models

    Full text link
    We discuss a new mechanism leading to a matrix product form for the stationary state of one-dimensional stochastic models. The corresponding algebra is quadratic and involves four different matrices. For the example of a coagulation-decoagulation model explicit four-dimensional representations are given and exact expressions for various physical quantities are recovered. We also find the general structure of nn-point correlation functions at the phase transition.Comment: LaTeX source, 7 pages, no figure

    On the occurrence of oscillatory modulations in the power-law behavior of dynamic and kinetic processes in fractals

    Full text link
    The dynamic and kinetic behavior of processes occurring in fractals with spatial discrete scale invariance (DSI) is considered. Spatial DSI implies the existence of a fundamental scaling ratio (b_1). We address time-dependent physical processes, which as a consequence of the time evolution develop a characteristic length of the form ξt1/z\xi \propto t^{1/z}, where z is the dynamic exponent. So, we conjecture that the interplay between the physical process and the symmetry properties of the fractal leads to the occurrence of time DSI evidenced by soft log-periodic modulations of physical observables, with a fundamental time scaling ratio given by τ=b1z\tau = b_1 ^z. The conjecture is tested numerically for random walks, and representative systems of broad universality classes in the fields of irreversible and equilibrium critical phenomena.Comment: 6 pages, 3 figures. Submitted to EP

    Persistence in systems with conserved order parameter

    Full text link
    We consider the low-temperature coarsening dynamics of a one-dimensional Ising ferromagnet with conserved Kawasaki-like dynamics in the domain representation. Domains diffuse with size-dependent diffusion constant, D(l)lγD(l) \propto l^\gamma with γ=1\gamma = -1. We generalize this model to arbitrary γ\gamma, and derive an expression for the domain density, N(t)tϕN(t) \sim t^{-\phi} with ϕ=1/(2γ)\phi=1/(2-\gamma), using a scaling argument. We also investigate numerically the persistence exponent θ\theta characterizing the power-law decay of the number, Np(t)N_p(t), of persistent (unflipped) spins at time tt, and find Np(t)tθN_{p}(t)\sim t^{-\theta} where θ\theta depends on γ\gamma. We show how the results for ϕ\phi and θ\theta are related to similar calculations in diffusion-limited cluster-cluster aggregation (DLCA) where clusters with size-dependent diffusion constant diffuse through an immobile `empty' phase and aggregate irreversibly on impact. Simulations show that, while ϕ\phi is the same in both models, θ\theta is different except for γ=0\gamma=0. We also investigate models that interpolate between symmetric domain diffusion and DLCA.Comment: 9 pages, minor revision
    corecore