1,025 research outputs found
Coulomb blockade and Non-Fermi-liquid behavior in quantum dots
The non-Fermi-liquid properties of an ultrasmall quantum dot coupled to a
lead and to a quantum box are investigated. Tuning the ratio of the tunneling
amplitudes to the lead and box, we find a line of two-channel Kondo fixed
points for arbitrary Coulomb repulsion on the dot, governing the transition
between two distinct Fermi-liquid regimes. The Fermi liquids are characterized
by different values of the conductance. For an asymmetric dot, spin and charge
degrees of freedom are entangled: a continuous transition from a spin to a
charge two-channel Kondo effect evolves. The crossover temperature to the
two-channel Kondo effect is greatly enhanced away from the local-moment regime,
making this exotic effect accessible in realistic quantum-dot devices.Comment: 5 figure
Exponents appearing in heterogeneous reaction-diffusion models in one dimension
We study the following 1D two-species reaction diffusion model : there is a
small concentration of B-particles with diffusion constant in an
homogenous background of W-particles with diffusion constant ; two
W-particles of the majority species either coagulate ()
or annihilate () with the respective
probabilities and ; a B-particle and a
W-particle annihilate () with probability 1. The
exponent describing the asymptotic time decay of
the minority B-species concentration can be viewed as a generalization of the
exponent of persistent spins in the zero-temperature Glauber dynamics of the 1D
-state Potts model starting from a random initial condition : the
W-particles represent domain walls, and the exponent
characterizes the time decay of the probability that a diffusive "spectator"
does not meet a domain wall up to time . We extend the methods introduced by
Derrida, Hakim and Pasquier ({\em Phys. Rev. Lett.} {\bf 75} 751 (1995); Saclay
preprint T96/013, to appear in {\em J. Stat. Phys.} (1996)) for the problem of
persistent spins, to compute the exponent in perturbation
at first order in for arbitrary and at first order in
for arbitrary .Comment: 29 pages. The three figures are not included, but are available upon
reques
Time evolution of the reaction front in a subdiffusive system
Using the quasistatic approximation, we show that in a subdiffusion--reaction
system the reaction front evolves in time according to the formula
, with being the subdiffusion parameter. The
result is derived for the system where the subdiffusion coefficients of
reactants differ from each other. It includes the case of one static reactant.
As an application of our results, we compare the time evolution of reaction
front extracted from experimental data with the theoretical formula and we find
that the transport process of organic acid particles in the tooth enamel is
subdiffusive.Comment: 18 pages, 3 figure
Complete Exact Solution of Diffusion-Limited Coalescence, A + A -> A
Some models of diffusion-limited reaction processes in one dimension lend
themselves to exact analysis. The known approaches yield exact expressions for
a limited number of quantities of interest, such as the particle concentration,
or the distribution of distances between nearest particles. However, a full
characterization of a particle system is only provided by the infinite
hierarchy of multiple-point density correlation functions. We derive an exact
description of the full hierarchy of correlation functions for the
diffusion-limited irreversible coalescence process A + A -> A.Comment: 4 pages, 2 figures (postscript). Typeset with Revte
Spectral dimensions of hierarchical scale-free networks with shortcuts
The spectral dimension has been widely used to understand transport
properties on regular and fractal lattices. Nevertheless, it has been little
studied for complex networks such as scale-free and small world networks. Here
we study the spectral dimension and the return-to-origin probability of random
walks on hierarchical scale-free networks, which can be either fractals or
non-fractals depending on the weight of shortcuts. Applying the renormalization
group (RG) approach to the Gaussian model, we obtain the spectral dimension
exactly. While the spectral dimension varies between and for the
fractal case, it remains at , independent of the variation of network
structure for the non-fractal case. The crossover behavior between the two
cases is studied through the RG flow analysis. The analytic results are
confirmed by simulation results and their implications for the architecture of
complex systems are discussed.Comment: 10 pages, 3 figure
Reaction-diffusion with a time-dependent reaction rate: the single-species diffusion-annihilation process
We study the single-species diffusion-annihilation process with a
time-dependent reaction rate, lambda(t)=lambda_0 t^-omega. Scaling arguments
show that there is a critical value of the decay exponent omega_c(d) separating
a reaction-limited regime for omega > omega_c from a diffusion-limited regime
for omega < omega_c. The particle density displays a mean-field,
omega-dependent, decay when the process is reaction limited whereas it behaves
as for a constant reaction rate when the process is diffusion limited. These
results are confirmed by Monte Carlo simulations. They allow us to discuss the
scaling behaviour of coupled diffusion-annihilation processes in terms of
effective time-dependent reaction rates.Comment: 11 pages, 9 figures, minor correction
Determining mean first-passage time on a class of treelike regular fractals
Relatively general techniques for computing mean first-passage time (MFPT) of
random walks on networks with a specific property are very useful, since a
universal method for calculating MFPT on general graphs is not available
because of their complexity and diversity. In this paper, we present techniques
for explicitly determining the partial mean first-passage time (PMFPT), i.e.,
the average of MFPTs to a given target averaged over all possible starting
positions, and the entire mean first-passage time (EMFPT), which is the average
of MFPTs over all pairs of nodes on regular treelike fractals. We describe the
processes with a family of regular fractals with treelike structure. The
proposed fractals include the fractal and the Peano basin fractal as their
special cases. We provide a formula for MFPT between two directly connected
nodes in general trees on the basis of which we derive an exact expression for
PMFPT to the central node in the fractals. Moreover, we give a technique for
calculating EMFPT, which is based on the relationship between characteristic
polynomials of the fractals at different generations and avoids the computation
of eigenvalues of the characteristic polynomials. Making use of the proposed
methods, we obtain analytically the closed-form solutions to PMFPT and EMFPT on
the fractals and show how they scale with the number of nodes. In addition, to
exhibit the generality of our methods, we also apply them to the Vicsek
fractals and the iterative scale-free fractal tree and recover the results
previously obtained.Comment: Definitive version published in Physical Review
On Matrix Product Ground States for Reaction-Diffusion Models
We discuss a new mechanism leading to a matrix product form for the
stationary state of one-dimensional stochastic models. The corresponding
algebra is quadratic and involves four different matrices. For the example of a
coagulation-decoagulation model explicit four-dimensional representations are
given and exact expressions for various physical quantities are recovered. We
also find the general structure of -point correlation functions at the phase
transition.Comment: LaTeX source, 7 pages, no figure
On the occurrence of oscillatory modulations in the power-law behavior of dynamic and kinetic processes in fractals
The dynamic and kinetic behavior of processes occurring in fractals with
spatial discrete scale invariance (DSI) is considered. Spatial DSI implies the
existence of a fundamental scaling ratio (b_1). We address time-dependent
physical processes, which as a consequence of the time evolution develop a
characteristic length of the form , where z is the dynamic
exponent. So, we conjecture that the interplay between the physical process and
the symmetry properties of the fractal leads to the occurrence of time DSI
evidenced by soft log-periodic modulations of physical observables, with a
fundamental time scaling ratio given by . The conjecture is
tested numerically for random walks, and representative systems of broad
universality classes in the fields of irreversible and equilibrium critical
phenomena.Comment: 6 pages, 3 figures. Submitted to EP
Persistence in systems with conserved order parameter
We consider the low-temperature coarsening dynamics of a one-dimensional
Ising ferromagnet with conserved Kawasaki-like dynamics in the domain
representation. Domains diffuse with size-dependent diffusion constant, with . We generalize this model to arbitrary
, and derive an expression for the domain density, with , using a scaling argument. We also
investigate numerically the persistence exponent characterizing the
power-law decay of the number, , of persistent (unflipped) spins at
time , and find where depends on
. We show how the results for and are related to
similar calculations in diffusion-limited cluster-cluster aggregation (DLCA)
where clusters with size-dependent diffusion constant diffuse through an
immobile `empty' phase and aggregate irreversibly on impact. Simulations show
that, while is the same in both models, is different except for
. We also investigate models that interpolate between symmetric
domain diffusion and DLCA.Comment: 9 pages, minor revision
- …