5 research outputs found

    Improving the altimetric rain record from Jason-1 & Jason-2

    Get PDF
    Dual-frequency rain-flagging has long been a standard part of altimetric data analysis, both for quality control of the data and for the study of rain itself, because altimeters can provide a finer spatial sampling of rain than can passive microwave instruments. However, there have been many varied implementations, using different records of the surface backscatter and different thresholds. This paper compares four different measures available for the recently-launched Jason-2. The evaluation compares these measures against clearly desired properties, finding that in most cases the adjusted backscatter and that from the ice retracker perform much better than that recommended in the users' handbook. The adjusted backscatter measure also provides a much better link to observations from Jason-1, opening up a much longer period for consistent rain investigations, and enabling greatly improved analysis of the short-scale variability of precipitation. Initial analysis shows that although the spatial and temporal gradients of backscatter increase at very low winds, the spatial gradients in rain attenuation are concentrated where rainfall is greatest, whilst the temporal changes have a simple broad latitudinal pattern

    Retrieval of eddy dynamics from SMOS sea surface salinity measurements in the Algerian Basin (Mediterranean Sea)

    Get PDF
    8 pages, 4 figures, supporting information https://dx.doi.org/10.1002/2016GL069595The circulation in the Algerian Basin is characterized by the presence of fresh-core eddies that propagate along the coast or at distances between 100 and 200 km from the coast. Enhancements in the processing of the Soil Moisture and Ocean Salinity (SMOS) data have allowed to produce, for the first time, satellite sea surface salinity (SSS) maps in the Mediterranean Sea that capture the signature of Algerian eddies. SMOS data can be used to track them for long periods of time, especially during winter. SMOS SSS maps are well correlated with in situ measurements although the former has a smaller dynamical range. Despite this limitation, SMOS SSS maps capture the key dynamics of Algerian eddies allowing to retrieve velocities from SSS with the correct sign of vorticityThis work has been funded by the Spanish Ministry of Economy through the National R+D Plan by means of Promises project (ESP2015-67549-C3) and previous grants and by the European Space Agency through the GlobCurrent Data User Element project (4000109513/13/I-LG). Financial support by FundaciĂłn General CSIC (Programa ComFuturo) is also acknowledgedPeer Reviewe
    corecore