72 research outputs found

    Broadband near-infrared astronomical spectrometer calibration and on-sky validation with an electro-optic laser frequency comb

    Get PDF
    The quest for extrasolar planets and their characterisation as well as studies of fundamental physics on cosmological scales rely on capabilities of high-resolution astronomical spectroscopy. A central requirement is a precise wavelength calibration of astronomical spectrographs allowing for extraction of subtle wavelength shifts from the spectra of stars and quasars. Here, we present an all-fibre, 400 nm wide near-infrared frequency comb based on electro-optic modulation with 14.5 GHz comb line spacing. Tests on the high-resolution, near-infrared spectrometer GIANO-B show a photon-noise limited calibration precision of <10 cm/s as required for Earth-like planet detection. Moreover, the presented comb provides detailed insight into particularities of the spectrograph such as detector inhomogeneities and differential spectrograph drifts. The system is validated in on-sky observations of a radial velocity standard star (HD221354) and telluric atmospheric absorption features. The advantages of the system include simplicity, robustness and turn-key operation, features that are valuable at the observation sites

    The HARPS-N archive through a Cassandra, NoSQL database suite?

    Get PDF
    The TNG-INAF is developing the science archive for the WEAVE instrument. The underlying architecture of the archive is based on a non relational database, more precisely, on Apache Cassandra cluster, which uses a NoSQL technology. In order to test and validate the use of this architecture, we created a local archive which we populated with all the HARPSN spectra collected at the TNG since the instrument's start of operations in mid-2012, as well as developed tools for the analysis of this data set. The HARPS-N data set is two orders of magnitude smaller than WEAVE, but we want to demonstrate the ability to walk through a complete data set and produce scientific output, as valuable as that produced by an ordinary pipeline, though without accessing directly the FITS files. The analytics is done by Apache Solr and Spark and on a relational PostgreSQL database. As an example, we produce observables like metallicity indexes for the targets in the archive and compare the results with the ones coming from the HARPS-N regular data reduction software. The aim of this experiment is to explore the viability of a high availability cluster and distributed NoSQL database as a platform for complex scientific analytics on a large data set, which will then be ported to the WEAVE Archive System (WAS) which we are developing for the WEAVE multi object, fiber spectrograph

    High-resolution TNG spectra of T Tauri stars. Near-IR GIANO observations of the young variables XZ Tauri and DR Tauri

    Get PDF
    Aims: We aim to characterise the star-disk interaction region in T Tauri stars that show photometric and spectroscopic variability. Methods: We used the GIANO instrument at the Telescopio Nazionale Galileo to obtain near-infrared high-resolution spectra (R 50 000) of XZ Tau and DR Tau, which are two actively accreting T Tauri stars classified as EXors. Equivalent widths and profiles of the observed features are used to derive information on the properties of the inner disk, the accretion columns, and the winds. Results: Both sources display composite H I line profiles, where contributions from both accreting gas and high-velocity winds can be recognised. These lines are progressively more symmetric and narrower with increasing upper energy which may be interpreted in terms of two components with different decrements or imputed to self-absorption effects. XZ Tau is observed in a relatively high state of activity with respect to literature observations. The variation of the He I 1.08 ÎŒm line blue-shifted absorption, in particular, suggests that the inner wind has undergone a dramatic change in its velocity structure, connected with a recent accretion event. DR Tau has a more stable wind as its He I 1.08 ÎŒm absorption does not show variations with time in spite of strong variability of the emission component. The IR veiling in the two sources can be interpreted as due to blackbody emission at temperatures of 1600 K and 2300 K for XZ Tau and DR Tau, respectively, with emitting areas 30 times larger than the central star. While for XZ Tau these conditions are consistent with emission from the inner rim of the dusty disk, the fairly high temperature inferred for DR Tau might suggest that its veiling originates from a thick gaseous disk located within the dust sublimation radius. Strong and broad metallic lines, mainly from C I and Fe I, are detected in XZ Tau, similar to those observed in other EXor sources during burst phases. At variance, DR Tau shows weaker and narrower metallic lines, despite its larger accretion luminosity. This suggests that accretion is not the only driver of metallic line excitation. Conclusions: The presented observations demonstrate the potential of wide-band, high-resolution near-IR spectroscopy to simultaneously probe the different phenomena that occur in the interaction region between the stellar magnetosphere and the accretion disk, thus providing hints on how these two structures are linked to each other

    Observations of A Fast-Expanding and UV-Bright Type Ia Supernova SN 2013gs

    Get PDF
    In this paper, we present extensive optical and ultraviolet (UV) observations of the type Ia supernova (SN Ia) 2013gs discovered during the Tsinghua-NAOC Transient Survey. The photometric observations in the optical show that the light curves of SN 2013gs is similar to that of normal SNe Ia, with an absolute peak magnitude of MBM_{B} = −-19.25 ±\pm 0.15 mag and a post-maximum decline rate Δ\Deltam15_{15}(B) = 1.00 ± \pm 0.05 mag. \emph{Gehrels Swift} UVOT observations indicate that SN 2013gs shows unusually strong UV emission (especially in the uvw1uvw1 band) at around the maximum light (Muvw1_{uvw1} ∌\sim −-18.9 mag). The SN is characterized by relatively weak Fe~{\sc ii} {\sc iii} absorptions at ∌\sim 5000{\AA} in the early spectra and a larger expansion velocity (vSiv_{Si} ∌\sim 13,000 km s−1^{-1} around the maximum light) than the normal-velocity SNe Ia. We discuss the relation between the uvw1−vuvw1-v color and some observables, including Si~{\sc ii} velocity, line strength of Si~{\sc ii} λ\lambda6355, Fe~{\sc ii}/{\sc iii} lines and Δm15\Delta m_{15}(B). Compared to other fast-expanding SNe Ia, SN 2013gs exhibits Si and Fe absorption lines with similar strength and bluer uvw1−vuvw1-v color. We briefly discussed the origin of the observed UV dispersion of SNe Ia.Comment: 31 pages, 10 figures, accepted to publish in Ap

    Characterizing K2 planet discoveries : a super-Earth transiting the bright K dwarf HIP 116454

    Get PDF
    We report the first planet discovery from the two-wheeled Kepler (K2) mission: HIP 116454 b. The host star HIP 116454 is a bright (V = 10.1, K = 8.0) K1 dwarf with high proper motion and a parallax-based distance of 55.2 ± 5.4 pc. Based on high-resolution optical spectroscopy, we find that the host star is metal-poor with [Fe/H] =–0.16 ± 0.08 and has a radius R = 0.716 ± 0.024 R ☉ and mass M = 0.775 ± 0.027 M ☉. The star was observed by the Kepler spacecraft during its Two-Wheeled Concept Engineering Test in 2014 February. During the 9 days of observations, K2 observed a single transit event. Using a new K2 photometric analysis technique, we are able to correct small telescope drifts and recover the observed transit at high confidence, corresponding to a planetary radius of pR = 2.53 ± 0.18 R ⊕. Radial velocity observations with the HARPS-N spectrograph reveal a 11.82 ± 1.33 M ⊕ planet in a 9.1 day orbit, consistent with the transit depth, duration, and ephemeris. Follow-up photometric measurements from the MOST satellite confirm the transit observed in the K2 photometry and provide a refined ephemeris, making HIP 116454 b amenable for future follow-up observations of this latest addition to the growing population of transiting super-Earths around nearby, bright stars.Publisher PDFPeer reviewe

    The Kepler-10 planetary system revisited by HARPS-N: A hot rocky world and a solid Neptune-mass planet

    Get PDF
    Kepler-10b was the first rocky planet detected by the Kepler satellite and con- firmed with radial velocity follow-up observations from Keck-HIRES. The mass of the planet was measured with a precision of around 30%, which was insufficient to constrain models of its internal structure and composition in detail. In addition to Kepler-10b, a second planet transiting the same star with a period of 45 days was sta- tistically validated, but the radial velocities were only good enough to set an upper limit of 20 Mearth for the mass of Kepler-10c. To improve the precision on the mass for planet b, the HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N spectrograph on the Telescopio Nazionale Galileo on La Palma. In to- tal, 148 high-quality radial-velocity measurements were obtained over two observing seasons. These new data allow us to improve the precision of the mass determina- tion for Kepler-10b to 15%. With a mass of 3.33 +/- 0.49 Mearth and an updated radius of 1.47 +0.03 -0.02 Rearth, Kepler-10b has a density of 5.8 +/- 0.8 g cm-3, very close to the value -0.02 predicted by models with the same internal structure and composition as the Earth. We were also able to determine a mass for the 45-day period planet Kepler-10c, with an even better precision of 11%. With a mass of 17.2 +/- 1.9 Mearth and radius of 2.35 +0.09 -0.04 Rearth, -0.04 Kepler-10c has a density of 7.1 +/- 1.0 g cm-3. Kepler-10c appears to be the first strong evidence of a class of more massive solid planets with longer orbital periods.Comment: 44 pages, 8 figures, accepted for publication in Ap

    Kepler-102 : masses and compositions for a super-Earth and sub-Neptune orbiting an active star

    Get PDF
    Funding: This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant No. 1842402. C.L.B., L.W., and D.H. acknowledge support from National Aeronautics and Space Administration (grant No. 80NSSC19K0597) issued through the Astrophysics Data Analysis Program. D.H. also acknowledges support from the Alfred P. Sloan Foundation. K.R. acknowledges support from the UK STFC via grant No. ST/V000594/1. E.G. acknowledges support from NASA grant No. 80NSSC20K0957 (Exoplanets Research Program).Radial velocity (RV) measurements of transiting multiplanet systems allow us to understand the densities and compositions of planets unlike those in the solar system. Kepler-102, which consists of five tightly packed transiting planets, is a particularly interesting system since it includes a super-Earth (Kepler-102d) and a sub-Neptune-sized planet (Kepler-102e) for which masses can be measured using RVs. Previous work found a high density for Kepler-102d, suggesting a composition similar to that of Mercury, while Kepler-102e was found to have a density typical of sub-Neptune size planets; however, Kepler-102 is an active star, which can interfere with RV mass measurements. To better measure the mass of these two planets, we obtained 111 new RVs using Keck/HIRES and Telescopio Nazionale Galileo/HARPS-N and modeled Kepler-102's activity using quasiperiodic Gaussian process regression. For Kepler-102d, we report a mass upper limit Md < 5.3 M⊕ (95% confidence), a best-fit mass Md = 2.5 ± 1.4 M⊕, and a density ρd = 5.6 ± 3.2 g cm−3, which is consistent with a rocky composition similar in density to the Earth. For Kepler-102e we report a mass Me = 4.7 ± 1.7 M⊕ and a density ρe = 1.8 ± 0.7 g cm−3. These measurements suggest that Kepler-102e has a rocky core with a thick gaseous envelope comprising 2%–4% of the planet mass and 16%–50% of its radius. Our study is yet another demonstration that accounting for stellar activity in stars with clear rotation signals can yield more accurate planet masses, enabling a more realistic interpretation of planet interiors.Publisher PDFPeer reviewe
    • 

    corecore