323 research outputs found

    Manifestation of spin-orbit interaction in tunneling between 2D electron layers

    Full text link
    An influence of spin-orbit interaction on the tunneling between two 2D electron layers is considered. Particular attention is addressed to the relation between the contribution of Rashba and Dresselhaus types. It is shown that without scattering of the electrons, the tunneling conductance can either exhibit resonances at certain voltage values or be substantially suppressed over the whole voltage range. The dependence of the conductance on voltage turns out to be very sensitive to the relation between Rashba and Dresselhaus contributions even in the absence of magnetic field. The elastic scattering broadens the resonances in the first case and restores the conductance to a larger magnitude in the latter one. These effects open possibility to determine the parameters of spin-orbit interaction and electrons scattering time in tunneling experiments with no necessity of external magnetic field

    Spatial structure of Mn-Mn acceptor pairs in GaAs

    Get PDF
    The local density of states of Mn-Mn pairs in GaAs is mapped with cross-sectional scanning tunneling microscopy and compared with theoretical calculations based on envelope-function and tight-binding models. These measurements and calculations show that the crosslike shape of the Mn-acceptor wavefunction in GaAs persists even at very short Mn-Mn spatial separations. The resilience of the Mn-acceptor wave-function to high doping levels suggests that ferromagnetism in GaMnAs is strongly influenced by impurity-band formation. The envelope-function and tight-binding models predict similarly anisotropic overlaps of the Mn wave-functions for Mn-Mn pairs. This anisotropy implies differing Curie temperatures for Mn δ\delta-doped layers grown on differently oriented substrates.Comment: 4 pages, 4 figure
    • …
    corecore