249 research outputs found
Recommended from our members
Sex/gender differences and autism: setting the scene for future research.
OBJECTIVE: The relationship between sex/gender differences and autism has attracted a variety of research ranging from clinical and neurobiological to etiological, stimulated by the male bias in autism prevalence. Findings are complex and do not always relate to each other in a straightforward manner. Distinct but interlinked questions on the relationship between sex/gender differences and autism remain underaddressed. To better understand the implications from existing research and to help design future studies, we propose a 4-level conceptual framework to clarify the embedded themes. METHOD: We searched PubMed for publications before September 2014 using search terms "'sex OR gender OR females' AND autism." A total of 1,906 articles were screened for relevance, along with publications identified via additional literature reviews, resulting in 329 articles that were reviewed. RESULTS: Level 1, "Nosological and diagnostic challenges," concerns the question, "How should autism be defined and diagnosed in males and females?" Level 2, "Sex/gender-independent and sex/gender-dependent characteristics," addresses the question, "What are the similarities and differences between males and females with autism?" Level 3, "General models of etiology: liability and threshold," asks the question, "How is the liability for developing autism linked to sex/gender?" Level 4, "Specific etiological-developmental mechanisms," focuses on the question, "What etiological-developmental mechanisms of autism are implicated by sex/gender and/or sexual/gender differentiation?" CONCLUSIONS: Using this conceptual framework, findings can be more clearly summarized, and the implications of the links between findings from different levels can become clearer. Based on this 4-level framework, we suggest future research directions, methodology, and specific topics in sex/gender differences and autism.Dr. Lai has received grant or research support from the William
Binks Autism Neuroscience Fellowship, the European Autism Interventionsâ
A Multicentre Study for Developing New Medications (EU-AIMS), and
Wolfson College, Cambridge University. Dr. Lombardo has received
grant or research support from the British Academy, the Wellcome Trust,
and Jesus College, Cambridge University. Dr. Auyeung has received
grant or research support from the Wellcome Trust. Dr. Chakrabarti has
received grant or research support from the UK Medical Research Council.
Dr. Baron-Cohen has received grant or research support from the Wellcome
Trust, the EU-AIMS, the UK Medical Research Council, and the Autism
Research Trust.This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S0890856714007254#
Recommended from our members
Elevated fetal steroidogenic activity in autism
Autism affects males more than females, giving rise to the idea that the influence of steroid hormones on early fetal brain development may be one important early biological risk factor. Utilizing the Danish Historic Birth Cohort and Danish Psychiatric Central Register, we identified all amniotic fluid samples of males born between 1993 and 1999 who later received ICD-10 (International Classification of Diseases, 10th Revision) diagnoses of autism, Asperger syndrome or PDD-NOS (pervasive developmental disorder not otherwise specified) (n=128) compared with matched typically developing controls. Concentration levels of Î4 sex steroids (progesterone, 17α-hydroxy-progesterone, androstenedione and testosterone) and cortisol were measured with liquid chromatography tandem mass spectrometry. All hormones were positively associated with each other and principal component analysis confirmed that one generalized latent steroidogenic factor was driving much of the variation in the data. The autism group showed elevations across all hormones on this latent generalized steroidogenic factor (Cohen's d=0.37, P=0.0009) and this elevation was uniform across ICD-10 diagnostic label. These results provide the first direct evidence of elevated fetal steroidogenic activity in autism. Such elevations may be important as epigenetic fetal programming mechanisms and may interact with other important pathophysiological factors in autism
Is there an association between prenatal testosterone and autistic traits in adolescents?
Prenatal testosterone (pT) is a crucial component in physiological masculinization in humans. In line with the Prenatal Sex Steroid Theory of autism, some studies have found a positive correlation between pT and autistic traits in childhood. However, effects in adolescence have not been explored. Hormonal and environmental changes occurring during puberty may alter the strength or the nature of prenatal effects on autistic traits. The current study examines if pT relates to autistic traits in a non-clinical sample of adolescents and young adults (NÂ =Â 97, 170 observations; age 13-21 years old). It also explores pT interactions with pubertal stage and timing. PT concentrations were measured from amniotic fluid extracted in the 2nd trimester of gestation via amniocentesis conducted for clinical purposes. Autistic traits were measured by self- and parent-reports on the Autism Spectrum Quotient (AQ) which provides a total score and 5 sub-scores (social skills, communication, imagination, attention switching and attention to detail). Self-reported pubertal stage was regressed on age to provide a measure of relative timing. We found no statistical evidence for a direct association between pT and autistic traits in this adolescent sample (males, females or full sample). Exploratory analyses suggested that pT correlated positively with autistic traits in adolescents with earlier puberty-onset, but statistical robustness of this finding was limited. Further exploratory post-hoc tests suggested the pT-by-pubertal timing interaction was stronger in males relative to females, in self-reported compared to parent-reported AQ and specifically for social traits. These findings require replication in larger samples. Findings have implications for understanding the effects of pT on human behavior, specifically existence of effects in adolescence
Recommended from our members
The "Reading the Mind in the Eyes" Test: Complete Absence of Typical Sex Difference in ~400 Men and Women with Autism.
The "Reading the Mind in the Eyes" test (Eyes test) is an advanced test of theory of mind. Typical sex difference has been reported (i.e., female advantage). Individuals with autism show more difficulty than do typically developing individuals, yet it remains unclear how this is modulated by sex, as females with autism have been under-represented. Here in a large, non-male-biased sample we test for the effects of sex, diagnosis, and their interaction. The Eyes test (revised version) was administered online to 395 adults with autism (178 males, 217 females) and 320 control adults (152 males, 168 females). Two-way ANOVA showed a significant sex-by-diagnosis interaction in total correct score (F(1,711) = 5.090, p = 0.024, ηp2 = 0.007) arising from a significant sex difference between control males and females (p < 0.001, Cohen's d = 0.47), and an absence of a sex difference between males and females with autism (p = 0.907, d = 0.01); significant case-control differences were observed across sexes, with effect sizes of d = 0.35 in males and d = 0.69 in females. Group-difference patterns fit with the extreme-male-brain (EMB) theory predictions. Eyes test-Empathy Quotient and Eyes test-Autism Spectrum Quotient correlations were significant only in females with autism (r = 0.35, r = -0.32, respectively), but not in the other 3 groups. Support vector machine (SVM) classification based on response pattern across all 36 items classified autism diagnosis with a relatively higher accuracy for females (72.2%) than males (65.8%). Nevertheless, an SVM model trained within one sex generalized equally well when applied to the other sex. Performance on the Eyes test is a sex-independent phenotypic characteristic of adults with autism, reflecting sex-common social difficulties, and provides support for the EMB theory predictions for both males and females. Performance of females with autism differed from same-sex controls more than did that of males with autism. Females with autism also showed stronger coherence between self-reported dispositional traits and Eyes test performance than all other groups.The study was funded by grants from the UK Medical Research Council (G0600977, http://www.mrc.ac.uk/), the Wellcome Trust (091774/Z/10/Z, http://www.wellcome.ac.uk/), and the Autism Research Trust (http://autismresearchtrust.org/) to SB-C. The research was supported by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care - East of England (CLAHRC-EoE). M-CL was supported by the William Binks Autism Neuroscience Fellowship during the period of this research.This is the final version of the article. It first appeared from PLoS via http://dx.doi.org/10.1371/journal.pone.013652
Recommended from our members
A behavioral comparison of male and female adults with high functioning autism spectrum conditions
Autism spectrum conditions (ASC) affect more males than females in the general population. However, within ASC it is unclear if there are phenotypic sex differences. Testing for similarities and differences between the sexes is important not only for clinical assessment but also has implications for theories of typical sex differences and of autism. Using cognitive and behavioral measures, we investigated similarities and differences between the sexes in age- and IQ-matched adults with ASC (high-functioning autism or Asperger syndrome). Of the 83 (45 males and 38 females) participants, 62 (33 males and 29 females) met Autism Diagnostic Interview-Revised (ADI-R) cut-off criteria for autism in childhood and were included in all subsequent analyses. The severity of childhood core autism symptoms did not differ between the sexes. Males and females also did not differ in self-reported empathy, systemizing, anxiety, depression, and obsessive-compulsive traits/symptoms or mentalizing performance. However, adult females with ASC showed more lifetime sensory symptoms (pâ=â0.036), fewer current socio-communication difficulties (pâ=â0.001), and more self-reported autistic traits (pâ=â0.012) than males. In addition, females with ASC who also had developmental language delay had lower current performance IQ than those without developmental language delay (p<0.001), a pattern not seen in males. The absence of typical sex differences in empathizing-systemizing profiles within the autism spectrum confirms a prediction from the extreme male brain theory. Behavioral sex differences within ASC may also reflect different developmental mechanisms between males and females with ASC. We discuss the importance of the superficially better socio-communication ability in adult females with ASC in terms of why females with ASC may more often go under-recognized, and receive their diagnosis later, than males
Improving effect size estimation and statistical power with multi-echo fMRI and its impact on understanding the neural systems supporting mentalizing.
Functional magnetic resonance imaging (fMRI) research is routinely criticized for being statistically underpowered due to characteristically small sample sizes and much larger sample sizes are being increasingly recommended. Additionally, various sources of artifact inherent in fMRI data can have detrimental impact on effect size estimates and statistical power. Here we show how specific removal of non-BOLD artifacts can improve effect size estimation and statistical power in task-fMRI contexts, with particular application to the social-cognitive domain of mentalizing/theory of mind. Non-BOLD variability identification and removal is achieved in a biophysical and statistically principled manner by combining multi-echo fMRI acquisition and independent components analysis (ME-ICA). Without smoothing, group-level effect size estimates on two different mentalizing tasks were enhanced by ME-ICA at a median rate of 24% in regions canonically associated with mentalizing, while much more substantial boosts (40-149%) were observed in non-canonical cerebellar areas. Effect size boosting occurs via reduction of non-BOLD noise at the subject-level and consequent reductions in between-subject variance at the group-level. Smoothing can attenuate ME-ICA-related effect size improvements in certain circumstances. Power simulations demonstrate that ME-ICA-related effect size enhancements enable much higher-powered studies at traditional sample sizes. Cerebellar effects observed after applying ME-ICA may be unobservable with conventional imaging at traditional sample sizes. Thus, ME-ICA allows for principled design-agnostic non-BOLD artifact removal that can substantially improve effect size estimates and statistical power in task-fMRI contexts. ME-ICA could mitigate some issues regarding statistical power in fMRI studies and enable novel discovery of aspects of brain organization that are currently under-appreciated and not well understood.This work was supported by a Wellcome Trust project grant to SB-C and ETB. MVL was
supported by the Wellcome Trust and fellowships from Jesus College, Cambridge and the
British Academy. PK was supported by the National Institutes of HealthâCambridge
Scholars Program. ETB is employed half-time by the University of Cambridge and halftime
by GlaxoSmithKline (GSK).This is the author accepted manuscript. It first appeared from Elseiver at http://dx.doi.org/10.1016/j.neuroimage.2016.07.022
Exclusive enteral nutrition mediates gut microbial and metabolic changes that are associated with remission in children with Crohnâs disease
GD and AWW receive core funding support from the Scottish Governmentâs Rural and Environmental Science and Analytical Services (RESAS) Division. JW was funded by the Wellcome Trust [Grant No. 098051]. JVL is funded by MRC New Investigator Grant (MR/P002536/1) and ERC Starting Grant (715662). JK is funded by NIHR: II-OL-1116-10027, NIH: R01-CA204403-01A1, Horizon H2020: ITN GROWTH. Imperial Biomedical Research Centre, SAGES research grant. Infrastructure support for this research was provided by the NIHR Imperial biomedical Research Centre (BRC). Microbiota analyses were carried out using the Maxwell computer cluster at the University of Aberdeen. We thank the Illumina MiSeq team at the Wellcome Sanger Institute for their assistance. This work was partially described in the Ph.D. thesis of KD (Retrieved 2020, Pediatric inflammatory bowel disease Monitoring, nutrition and surgery, https://pure.uva.nl/ws/files/23176012/Thesis_complete_.pdf).Peer reviewedPublisher PD
Intranasal oxytocin enhances intrinsic corticostriatal functional connectivity in women
Oxytocin may influence various human behaviors and the connectivity across subcortical and cortical networks. Previous oxytocin studies are male biased and often constrained by task-based inferences. Here, we investigate the impact of oxytocin on resting-state connectivity between subcortical and cortical networks in women. We collected resting-state functional magnetic resonance imaging (fMRI) data on 26 typically developing women 40âmin following intranasal oxytocin administration using a double-blind placebo-controlled crossover design. Independent components analysis (ICA) was applied to examine connectivity between networks. An independent analysis of oxytocin receptor (OXTR) gene expression in human subcortical and cortical areas was carried out to determine plausibility of direct oxytocin effects on OXTR. In women, OXTR was highly expressed in striatal and other subcortical regions, but showed modest expression in cortical areas. Oxytocin increased connectivity between corticostriatal circuitry typically involved in reward, emotion, social communication, language and pain processing. This effect was 1.39 standard deviations above the null effect of no difference between oxytocin and placebo. This oxytocin-related effect on corticostriatal connectivity covaried with autistic traits, such that oxytocin-related increase in connectivity was stronger in individuals with higher autistic traits. In sum, oxytocin strengthened corticostriatal connectivity in women, particularly with cortical networks that are involved in social-communicative, motivational and affective processes. This effect may be important for future work on neurological and psychiatric conditions (for example, autism), particularly through highlighting how oxytocin may operate differently for subsets of individuals.During this research RB was funded by the MRC UK, the Pinsent Darwin Trust and the Cambridge Trust. M-CL is supported by the William Binks Autism Neuroscience Fellowship, Cambridge and the OâBrien Scholars Program within the Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health and The Hospital for Sick Children, Toronto. SB-C is supported by the MRC UK, the Wellcome Trust and the Autism Research Trust. The research was supported by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care East of England at Cambridgeshire and Peterborough NHS Foundation Trust
- âŠ