677 research outputs found
Dances as Windows into Insect Perception
Honeybees signal the location of food sources to their hive- mates using a "dancing" flight pattern. Translating these patterns, scientists learn what bees perceiv
A lightweight, inexpensive robotic system for insect vision
Designing hardware for miniaturized robotics which mimics the capabilities of flying insects is of interest, because they share similar constraints (i.e. small size, low weight, and low energy consumption). Research in this area aims to enable robots with similarly efficient flight and cognitive abilities. Visual processing is important to flying insects' impressive flight capabilities, but currently, embodiment of insect-like visual systems is limited by the hardware systems available. Suitable hardware is either prohibitively expensive, difficult to reproduce, cannot accurately simulate insect vision characteristics, and/or is too heavy for small robotic platforms. These limitations hamper the development of platforms for embodiment which in turn hampers the progress on understanding of how biological systems fundamentally works. To address this gap, this paper proposes an inexpensive, lightweight robotic system for modelling insect vision. The system is mounted and tested on a robotic platform for mobile applications, and then the camera and insect vision models are evaluated. We analyse the potential of the system for use in embodiment of higher-level visual processes (i.e. motion detection) and also for development of navigation based on vision for robotics in general. Optic flow from sample camera data is calculated and compared to a perfect, simulated bee world showing an excellent resemblance
Hyperacute Directional Hearing and Phonotactic Steering in the Cricket (Gryllus bimaculatus deGeer)
Background: Auditory mate or prey localisation is central to the lifestyle of many animals and requires precise directional hearing. However, when the incident angle of sound approaches 0u azimuth, interaural time and intensity differences gradually vanish. This poses a demanding challenge to animals especially when interaural distances are small. To cope with these limitations imposed by the laws of acoustics, crickets employ a frequency tuned peripheral hearing system. Although this enhances auditory directionality the actual precision of directional hearing and phonotactic steering has never been studied in the behaviourally important frontal range. Principal Findings: Here we analysed the directionality of phonotaxis in female crickets (Gryllus bimaculatus) walking on an open-loop trackball system by measuring their steering accuracy towards male calling song presented at frontal angles of incidence. Within the range of 630u, females reliably discriminated the side of acoustic stimulation, even when the sound source deviated by only 1u from the animal’s length axis. Moreover, for angles of sound incidence between 1u and 6u the females precisely walked towards the sound source. Measuring the tympanic membrane oscillations of the front leg ears with a laser vibrometer revealed between 0u and 30u a linear increasing function of interaural amplitude differences with a slope of 0.4 dB/u. Auditory nerve recordings closely reflected these bilateral differences in afferent response latency and intensity that provide the physiological basis for precise auditory steering
Mechanisms, functions and ecology of colour vision in the honeybee.
notes: PMCID: PMC4035557types: Journal Article© The Author(s) 2014.This is an open access article that is freely available in ORE or from Springerlink.com. Please cite the published version available at: http://link.springer.com/article/10.1007%2Fs00359-014-0915-1Research in the honeybee has laid the foundations for our understanding of insect colour vision. The trichromatic colour vision of honeybees shares fundamental properties with primate and human colour perception, such as colour constancy, colour opponency, segregation of colour and brightness coding. Laborious efforts to reconstruct the colour vision pathway in the honeybee have provided detailed descriptions of neural connectivity and the properties of photoreceptors and interneurons in the optic lobes of the bee brain. The modelling of colour perception advanced with the establishment of colour discrimination models that were based on experimental data, the Colour-Opponent Coding and Receptor Noise-Limited models, which are important tools for the quantitative assessment of bee colour vision and colour-guided behaviours. Major insights into the visual ecology of bees have been gained combining behavioural experiments and quantitative modelling, and asking how bee vision has influenced the evolution of flower colours and patterns. Recently research has focussed on the discrimination and categorisation of coloured patterns, colourful scenes and various other groupings of coloured stimuli, highlighting the bees' behavioural flexibility. The identification of perceptual mechanisms remains of fundamental importance for the interpretation of their learning strategies and performance in diverse experimental tasks.Biotechnology and Biological Sciences Research Council (BBSRC
Adaptations for nocturnal vision in insect apposition eyes
Due to our own preference for bright light, we tend to forget that many insects are active in very dim light. The reasons for nocturnal activity are most easily seen in tropical areas of the world, where animals face severe competition for food and nocturnal insects are able to forage in a climate of reduced competition and predation. Generally nocturnal insects possess superposition compound eyes. This eye design is truly optimized for dim light as photons can be gathered through large apertures comprised of hundreds of lenses. In apposition eyes, on the other hand, the aperture consists of a single lens resulting in a poor photon catch and unreliable vision in dim light. Apposition eyes are therefore typically found in day-active insects and according to theoretical calculations should render bees blind by mid dusk. Nevertheless, the tropical bee Megalopta genalis and the wasp Apoica pallens have managed the transition to a nocturnal lifestyle while retaining their highly unsuitable apposition eye design. Far from being blind, these bees and wasps forage at extremely low light intensities. Moreover, M. genalis is the first insect shown to use landmark navigation at light intensities less than starlight. How do their apposition eyes permit such complex visual behaviour in so little light? Optical adaptations can significantly enhance sensitivity in apposition eyes. In bees and wasps, the major effect comes from their extremely wide photoreceptors, which are able to trap light reaching the eye from a large visual angle. These optical adaptations lead to a 30-fold increase in sensitivity compared to diurnal bees and wasps. This however is not sufficient for the 8 log units difference in light intensity between day and night. Our hypothesis is that neural adaptations in the form of spatial and temporal summation must be involved. By means of spatial summation the eyes could sum signals from large groups of visual units (ommatidia), in order to improve sensitivity at the cost of coarser spatial resolution. In nocturnal bees, spatial summation could be mediated via their wide laterally-spreading first-order interneurons (L-fibres) present in the first optic ganglion (lamina). These L-fibres have significantly larger dendritic fields than equivalent neurons in diurnal bees and the potential to sum photons from up to 18 visual units. Theoretical modelling further supports this hypothesis, as the optimal dendritic field size predicted by the model agrees well with the anatomical data
- …