39 research outputs found
Optical Network Models and their Application to Software-Defined Network Management
Software-defined networking is finding its way into optical networks. Here,
it promises a simplification and unification of network management for optical
networks allowing automation of operational tasks despite the highly diverse
and vendor-specific commercial systems and the complexity and analog nature of
optical transmission. A fundamental component for software-defined optical
networking are common abstractions and interfaces. Currently, a number of
models for optical networks are available. They all claim to provide open and
vendor agnostic management of optical equipment. In this work, we survey and
compare the most important models and propose an intent interface for creating
virtual topologies that is integrated in the existing model ecosystem.Comment: Parts of the presented work has received funding from the European
Commission within the H2020 Research and Innovation Programme, under grant
agreeement n.645127, project ACIN
HeCSON: Heuristic for Configuration Selectionin Optical Network Planning
We present a transceiver configuration selection heuristic combining Enhanced
Gaussian Noise (EGN) models, which shows a 40\% increase in throughput and 87\%
decrease in execution time, compared to only approximate EGN and Full-Form EGN
respectively
Automatic Intent-Based Secure Service Creation Through a Multilayer SDN Network Orchestration
Growing traffic demands and increasing security awareness are driving the
need for secure services. Current solutions require manual configuration and
deployment based on the customer's requirements. In this work, we present an
architecture for an automatic intent-based provisioning of a secure service in
a multilayer - IP, Ethernet, and optical - network while choosing the
appropriate encryption layer using an open-source software-defined networking
(SDN) orchestrator. The approach is experimentally evaluated in a testbed with
commercial equipment. Results indicate that the processing impact of secure
channel creation on a controller is negligible. As the time for setting up
services over WDM varies between technologies, it needs to be taken into
account in the decision-making process.Comment: Parts of the presented work has received funding from the European
Commission within the H2020 Research and Innovation Programme, under grant
agreeement n.645127, project ACIN
Intent-Based In-flight Service Encryption in Multi-Layer Transport Networks
We demonstrate multi-layer encrypted service provisioning via the ACINO
orchestrator. ACINO combines a novel intent interface with an ONOS-based SDN
orchestrator to facilitate encrypted services at IP, Ethernet and optical
network layers.Comment: Optical Fiber Communication Conferenc
Integrated SDN/NFV management and orchestration architecture for dynamic deployment of virtual SDN control instances for virtual tenant networks
Software-defined networking (SDN) and network function virtualization (NFV) have emerged as the most promising candidates for improving network function and protocol programmability and dynamic adjustment of network resources. On the one hand, SDN is responsible for providing an abstraction of network resources through well-defined application programming interfaces. This abstraction enables SDN to perform network virtualization, that is, to slice the physical infrastructure and create multiple coexisting application-specific virtual tenant networks (VTNs) with specific quality-of-service and service-level-agreement requirements, independent of the underlying optical transport technology and network protocols. On the other hand, the notion of NFV relates to deploying network functions that are typically deployed in specialized and dedicated hardware, as software instances [called virtual network functions (VNFs)] running on commodity servers (e.g., in data centers) through software virtualization techniques. Despite all the attention that has been given to virtualizing IP functions (e.g., firewall; authentication, authorization, and accounting) or Long-Term Evolution control functions (e.g., mobility management entity, serving gateway, and packet data network gateway), some transport control functions can also be virtualized and moved to the cloud as a VNF. In this work we propose virtualizing the tenant SDN control functions of a VTN and moving them into the cloud. The control of a VTN is a key requirement associated with network virtualization, since it allows the dynamic programming (i.e., direct control and configuration) of the virtual resources allocated to the VTN. We experimentally assess and evaluate the first SDN/NFV orchestration architecture in a multipartner testbed to dynamically deploy independent SDN controller instances for each instantiated VTN and to provide the required connectivity within minutes
MALDI mass spectrometry imaging - Diagnostic pathways and metabolites for renal tumor entities
BACKGROUND
Correct tumor subtyping of primary renal tumors is essential for treatment decision in daily routine. Most of the tumors can be classified on morphology alone. Nevertheless, some diagnoses are difficult and further investigations are needed for correct tumor subtyping. Beside histochemical investigations high mass resolution matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can detect new diagnostic biomarkers and hence improve the diagnostic.
PATIENTS AND METHODS
Formalin-fixed paraffin embedded (FFPE) tissue specimens from clear cell renal cell carcinoma (ccRCC, n=552), papillary RCC (pRCC, n=122), chromophobe RCC (chRCC, n=108) and renal Oncocytoma (rO, n=71) were analyzed by high mass resolution matrix-assisted laser desorption/ionization (MALDI) fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry imaging (MSI). SPACiAL pipeline was executed for automated co-registration of histological and molecular features. Pathway enrichment and pathway topology analysis were performed to determine significant differences between RCC subtypes.
RESULTS
We discriminated the four histological subtypes (ccRCC, pRCC, chRCC and rO) and established the subtype specific pathways and metabolic profiles. RO showed an enrichment of pentose phosphate, taurine and hypotaurine, glycerophospholipid, amino sugar and nucleotide sugar, fructose and mannose, glycine, serine and threonine pathways. ChRCC is defined by enriched pathways including the amino sugar and nucleotide sugar, fructose and mannose, glycerophospholipid, taurine and hypotaurine, glycine, serine and threonine pathways. Pyrimidine, amino sugar and nucleotide sugar, glycerophospholipid and glutathione pathways are enriched in ccRCC. Furthermore, we detected enriched phosphatidylinositol and glycerophospholipid pathways in pRCC.
CONCLUSION
In summary, we performed a classification system with a mean accuracy in tumor discrimination of 85,13%. Furthermore, we detected tumor specific biomarkers for the four most common primary renal tumors by MALDI-MSI. This method is a useful tool in differential diagnosis and in biomarker detection
Distributed architecture supporting intelligent optical measurement aggregation and streaming event telemetry
A distributed telemetry system integrating optical measurement and event data collection is demonstrated. Measurements of optical spectra from Nokia Bell Labs, of optical transponders from ADVA and SDN controller events from CTTC will be showcased.The research leading to these results has received funding from the H2020 B5G-OPEN (G.A. 101016663) and the MICINN IBON (PID2020-114135RB-I00) projects and from the ICREA Institution.Peer ReviewedPostprint (author's final draft