8 research outputs found

    Differential aquaporin 4 expression during edema build-up and resolution phases of brain inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vasogenic edema dynamically accumulates in many brain disorders associated with brain inflammation, with the critical step of edema exacerbation feared in patient care. Water entrance through blood-brain barrier (BBB) opening is thought to have a role in edema formation. Nevertheless, the mechanisms of edema resolution remain poorly understood. Because the water channel aquaporin 4 (AQP4) provides an important route for vasogenic edema resolution, we studied the time course of AQP4 expression to better understand its potential effect in countering the exacerbation of vasogenic edema.</p> <p>Methods</p> <p>Focal inflammation was induced in the rat brain by a lysolecithin injection and was evaluated at 1, 3, 7, 14 and 20 days using a combination of in vivo MRI with apparent diffusion coefficient (ADC) measurements used as a marker of water content, and molecular and histological approaches for the quantification of AQP4 expression. Markers of active inflammation (macrophages, BBB permeability, and interleukin-1β) and markers of scarring (gliosis) were also quantified.</p> <p>Results</p> <p>This animal model of brain inflammation demonstrated two phases of edema development: an initial edema build-up phase during active inflammation that peaked after 3 days (ADC increase) was followed by an edema resolution phase that lasted from 7 to 20 days post injection (ADC decrease) and was accompanied by glial scar formation. A moderate upregulation in AQP4 was observed during the build-up phase, but a much stronger transcriptional and translational level of AQP4 expression was observed during the secondary edema resolution phase.</p> <p>Conclusions</p> <p>We conclude that a time lag in AQP4 expression occurs such that the more significant upregulation was achieved only after a delay period. This change in AQP4 expression appears to act as an important determinant in the exacerbation of edema, considering that AQP4 expression is insufficient to counter the water influx during the build-up phase, while the second more pronounced but delayed upregulation is involved in the resolution phase. A better pathophysiological understanding of edema exacerbation, which is observed in many clinical situations, is crucial in pursuing new therapeutic strategies.</p

    Modulating the water channel AQP4 alters miRNA expression, astrocyte connectivity and water diffusion in the rodent brain.

    No full text
    Aquaporins (AQPs) facilitate water diffusion through the plasma membrane. Brain aquaporin-4 (AQP4) is present in astrocytes and has critical roles in normal and disease physiology. We previously showed that a 24.9% decrease in AQP4 expression after in vivo silencing resulted in a 45.8% decrease in tissue water mobility as interpreted from magnetic resonance imaging apparent diffusion coefficients (ADC). Similar to previous in vitro studies we show decreased expression of the gap junction protein connexin 43 (Cx43) in vivo after intracortical injection of siAQP4 in the rat. Moreover, siAQP4 induced a loss of dye-coupling between astrocytes in vitro, further demonstrating its effect on gap junctions. In contrast, silencing of Cx43 did not alter the level of AQP4 or water mobility (ADC) in the brain. We hypothesized that siAQP4 has off-target effects on Cx43 expression via modification of miRNA expression. The decreased expression of Cx43 in siAQP4-treated animals was associated with up-regulation of miR224, which is known to target AQP4 and Cx43 expression. This could be one potential molecular mechanism responsible for the effect of siAQP4 on Cx43 expression, and the resultant decrease in astrocyte connectivity and dramatic effects on ADC values and water mobility

    Early cerebrovascular and long-term neurological modifications ensue following juvenile mild traumatic brain injury in male mice

    No full text
    International audienceClinical evidence suggests that a mild traumatic brain injury occurring at a juvenile age (jmTBI) may be sufficient to elicit pathophysiological modifications. However, clinical reports are not adequately integrated with experimental studies examining brain changes occurring post-jmTBI. We monitored the cerebrovascular modifications and assessed the long-term behavioral and electrographic changes resulting from experimental jmTBI.In vivo photoacoustic imaging demonstrated a decrease of cerebrovascular oxygen saturation levels in the impacted area hours post-jmTBI. Three days post-jmTBI oxygenation returned to pre-jmTBI levels, stabilizing at 7 and 30 days after the injury. At the functional level, cortical arterioles displayed no NMDA vasodilation response, while vasoconstriction induced by thromboxane receptor agonist was enhanced at 1 day post-jmTBI. Arterioles showed abnormal NMDA vasodilation at 3 days post-jmTBI, returning to normality at 7 days post injury. Histology showed changes in vessel diameters from 1 to 30 days post-jmTBI. Neurological evaluation indicated signs of anxiety-like behavior up to 30 days post-jmTBI. EEG recordings performed at the cortical site of impact 30 days post-jmTBI did not indicate seizures activity, although it revealed a reduction of gamma waves as compared to age matched sham. Histology showed decrease of neuronal filament staining. In conclusion, experimental jmTBI triggers an early cerebrovascular hypo‑oxygenation in vivo and faulty vascular reactivity. The exact topographical coherence and the direct casualty between early cerebrovascular changes and the observed long-term neurological modifications remain to be investigated. A potential translational value for cerebro-vascular oxygen monitoring in jmTBI is discussed

    Juvenile mild traumatic brain injury elicits distinct spatiotemporal astrocyte responses

    No full text
    Mild-traumatic brain injury (mTBI) represents ~80% of all emergency room visits and increases the probability of developing long-term cognitive disorders in children. To date, molecular and cellular mechanisms underlying post-mTBI cognitive dysfunction are unknown. Astrogliosis has been shown to significantly alter astrocytes' properties following brain injury, potentially leading to significant brain dysfunction. However, such alterations have never been investigated in the context of juvenile mTBI (jmTBI). A closed-head injury model was used to study jmTBI on postnatal-day 17 mice. Astrogliosis was evaluated using glial fibrillary acidic protein (GFAP), vimentin, and nestin immunolabeling in somatosensory cortex (SSC), dentate gyrus (DG), amygdala (AMY), and infralimbic area (ILA) of prefrontal cortex in both hemispheres from 1 to 30 days postinjury (dpi). In vivo T2-weighted-imaging (T2WI) and diffusion tensor imaging (DTI) were performed at 7 and 30 dpi to examine tissue level structural alterations. Increased GFAP-labeling was observed up to 30 dpi in the ipsilateral SSC, the initial site of the impact. However, vimentin and nestin expression was not perturbed by jmTBI. The morphology of GFAP positive cells was significantly altered in the SSC, DG, AMY, and ILA up to 7 dpi that some correlated with magnetic resonance imaging changes. T2WI and DTI values were significantly altered at 30 dpi within these brain regions most prominently in regions distant from the impact site. Our data show that jmTBI triggers changes in astrocytic phenotype with a distinct spatiotemporal pattern. We speculate that the presence and time course of astrogliosis may contribute to pathophysiological processes and long-term structural alterations following jmTBI. © 2019 Wiley Periodicals, Inc.Translational Research and Advanced Imaging LaboratoryBordeaux Region Aquitaine Initiative for Neuroscienc

    Juvenile mild traumatic brain injury elicits distinct spatiotemporal astrocyte responses.

    No full text
    International audienceMild-traumatic brain injury (mTBI) represents ~80% of all emergency room visits and increases the probability of developing long-term cognitive disorders in children. To date, molecular and cellular mechanisms underlying post-mTBI cognitive dysfunction are unknown. Astrogliosis has been shown to significantly alter astrocytes' properties following brain injury, potentially leading to significant brain dysfunction. However, such alterations have never been investigated in the context of juvenile mTBI (jmTBI). A closed-head injury model was used to study jmTBI on postnatal-day 17 mice. Astrogliosis was evaluated using glial fibrillary acidic protein (GFAP), vimentin, and nestin immunolabeling in somatosensory cortex (SSC), dentate gyrus (DG), amygdala (AMY), and infralimbic area (ILA) of prefrontal cortex in both hemispheres from 1 to 30 days postinjury (dpi). In vivo T2-weighted-imaging (T2WI) and diffusion tensor imaging (DTI) were performed at 7 and 30 dpi to examine tissue level structural alterations. Increased GFAP-labeling was observed up to 30 dpi in the ipsilateral SSC, the initial site of the impact. However, vimentin and nestin expression was not perturbed by jmTBI. The morphology of GFAP positive cells was significantly altered in the SSC, DG, AMY, and ILA up to 7 dpi that some correlated with magnetic resonance imaging changes. T2WI and DTI values were significantly altered at 30 dpi within these brain regions most prominently in regions distant from the impact site. Our data show that jmTBI triggers changes in astrocytic phenotype with a distinct spatiotemporal pattern. We speculate that the presence and time course of astrogliosis may contribute to pathophysiological processes and long-term structural alterations following jmTBI
    corecore