970 research outputs found

    Cluster structures for 2-Calabi-Yau categories and unipotent groups

    Full text link
    We investigate cluster tilting objects (and subcategories) in triangulated 2-Calabi-Yau categories and related categories. In particular we construct a new class of such categories related to preprojective algebras of non Dynkin quivers associated with elements in the Coxeter group. This class of 2-Calabi-Yau categories contains the cluster categories and the stable categories of preprojective algebras of Dynkin graphs as special cases. For these 2-Calabi-Yau categories we construct cluster tilting objects associated with each reduced expression. The associated quiver is described in terms of the reduced expression. Motivated by the theory of cluster algebras, we formulate the notions of (weak) cluster structure and substructure, and give several illustrations of these concepts. We give applications to cluster algebras and subcluster algebras related to unipotent groups, both in the Dynkin and non Dynkin case.Comment: 49 pages. For the third version the presentation is revised, especially Chapter III replaces the old Chapter III and I

    Return to Sender : Confronting Lynching and Our Haunted Landscapes

    Get PDF
    This article considers a set of controversial images, primarily taken between 1880 and 1920, depicting lynchings and racial violence. Emory University has made these images publicly available, prompting some to worry that the collection will re-inflict trauma on those who suffered under racism in the United States. The articles asks, in part: if new initiatives in museums or other public spaces could help Americans to collectively confront their inner demons and move beyond the timeless repetition of trauma. The article is available from Southern Changes: The Journal of the Southern Regional Council, 1978-2003

    An approach to the preliminary evaluation of Closed Ecological Life Support System (CELSS) scenarios and control strategies

    Get PDF
    Life support systems for manned space missions are discussed. A scenario analysis method was proposed for the initial step of comparing possible partial or total recycle scenarios. The method is discussed in detail

    Non-Gorenstein isolated singularities of graded countable Cohen-Macaulay type

    Full text link
    In this paper we show a partial answer the a question of C. Huneke and G. Leuschke (2003): Let R be a standard graded Cohen-Macaulay ring of graded countable Cohen-Macaulay representation type, and assume that R has an isolated singularity. Is R then necessarily of graded finite Cohen-Macaulay representation type? In particular, this question has an affirmative answer for standard graded non-Gorenstein rings as well as for standard graded Gorenstein rings of minimal multiplicity. Along the way, we obtain a partial classification of graded Cohen-Macaulay rings of graded countable Cohen-Macaulay type.Comment: 15 Page

    Automorphism groups of polycyclic-by-finite groups and arithmetic groups

    Get PDF
    We show that the outer automorphism group of a polycyclic-by-finite group is an arithmetic group. This result follows from a detailed structural analysis of the automorphism groups of such groups. We use an extended version of the theory of the algebraic hull functor initiated by Mostow. We thus make applicable refined methods from the theory of algebraic and arithmetic groups. We also construct examples of polycyclic-by-finite groups which have an automorphism group which does not contain an arithmetic group of finite index. Finally we discuss applications of our results to the groups of homotopy self-equivalences of K(\Gamma, 1)-spaces and obtain an extension of arithmeticity results of Sullivan in rational homotopy theory

    Azumaya Objects in Triangulated Bicategories

    Full text link
    We introduce the notion of Azumaya object in general homotopy-theoretic settings. We give a self-contained account of Azumaya objects and Brauer groups in bicategorical contexts, generalizing the Brauer group of a commutative ring. We go on to describe triangulated bicategories and prove a characterization theorem for Azumaya objects therein. This theory applies to give a homotopical Brauer group for derived categories of rings and ring spectra. We show that the homotopical Brauer group of an Eilenberg-Mac Lane spectrum is isomorphic to the homotopical Brauer group of its underlying commutative ring. We also discuss tilting theory as an application of invertibility in triangulated bicategories.Comment: 23 pages; final version; to appear in Journal of Homotopy and Related Structure
    corecore